1019 数字黑洞 (20 分)
给定任一个各位数字不完全相同的 4 位正整数,如果我们先把 4 个数字按非递增排序,再按非递减排序,然后用第 1 个数字减第 2 个数字,将得到一个新的数字。一直重复这样做,我们很快会停在有“数字黑洞”之称的 6174,这个神奇的数字也叫 Kaprekar 常数。
例如,我们从6767开始,将得到
7766 - 6677 = 1089
9810 - 0189 = 9621
9621 - 1269 = 8352
8532 - 2358 = 6174
7641 - 1467 = 6174
… …
现给定任意 4 位正整数,请编写程序演示到达黑洞的过程。
输入格式:
输入给出一个 (0,104 ) 区间内的正整数 N。
输出格式:
如果 N 的 4 位数字全相等,则在一行内输出 N - N = 0000;否则将计算的每一步在一行内输出,直到 6174 作为差出现,输出格式见样例。注意每个数字按 4 位数格式输出。
输入样例 1:
6767
输出样例 1:
7766 - 6677 = 1089
9810 - 0189 = 9621
9621 - 1269 = 8352
8532 - 2358 = 6174
输入样例 2:
2222
输出样例 2:
2222 - 2222 = 0000
思路:先判断是否是四个相同的整数,然后循环需要注意到几个点,注意补全前面的0,比如0189,整形的数据是189,需要在前面补0.别的还是简单的。
nums = input()
nums = "{0:0>4}".format(nums)
list_nums = list(nums)
if int(nums)%1111 == 0:
print("%s - %s = 0000" % (nums, nums))
else:
while True:
list_nums.sort(reverse=True)
max_num = int(list_nums[0]+list_nums[1]+list_nums[2]+list_nums[3])
min_num = int(list_nums[3]+list_nums[2]+list_nums[1]+list_nums[0])
res = "{0:0>4}".format(int(max_num) - int(min_num))
print("{0:0>4} - {1:0>4} = {2}".format(max_num, min_num, res))
if max_num-min_num == 6174:
break
list_nums = list(res)