[转载] python中set函数是什么数据类型_Python基本数据类型-list-tuple-dict-set详解

本文详细介绍了Python中的四种主要数据结构:列表、元组、字典和集合。列表是有序可变集合,支持多种操作如添加、删除元素。元组与列表类似但不可变,常用于存储不可变数据。字典是无序的键值对集合,通过键来存取元素。集合是无序不重复元素集,可用于成员运算和集合运算。文中还讨论了这些数据结构的初始化、操作、限制及各自的特点。
摘要由CSDN通过智能技术生成

参考链接: Python中的isdisjoint函数

Python基本数据类型-list-tuple-dict-set

 数据类型

 表示方法

 特性

 list

 列表用方括号表示:[]

 list是一种有序的集合,可以随时添加和删除其中的元素。和C++数组的区别就是类型可不同。

 tuple

 元组用圆括号表示:()

 和list相比唯一的差异在于元组是只读的,不能修改。

 dict

 字典用花括号表示:{}

 列表是有序的对象结合,字典是无序的对象集合。两者之间的区别在于:字典当中的元素是通过键来存取的,而不是通过偏移存取。

 set

 set()

 集合是一个无序不重复元素集,基本功能包括关系测试和消除重复元素

 列表list

 初始化列表

 指定元素初始化列表

 >>> num=['aa','bb','cc',1,2,3]

 >>> print num

 ['aa', 'bb', 'cc', 1, 2, 3]

 从字符串初始化列表

 >>> a='oiawoidhoawd97192048f'

 >>> num=list(a)

 >>> print num

 ['o', 'i', 'a', 'w', 'o', 'i', 'd', 'h', 'o', 'a', 'w', 'd', '9', '7', '1', '9', '2', '0', '4', '8', 'f']

 从元组初始化列表

 >>> a=(1,2,3,4,5,6,7,8)

 >>> num=list(a)

 >>> print num

 创建一个空列表

 >>> num=[]

 >>> print num

 []

 用某个固定值初始化列表

 >>> initial_value=0

 >>> list_length=5

 >>> sample_list=[initial_value]*list_length

 >>> print sample_list

 [0, 0, 0, 0, 0]

 >>> sample_list=[initial_value for i in range(10)]

 >>> print sample_list

 [0, 0, 0, 0, 0, 0, 0, 0, 0, 0]

 访问列表

 访问单个元素

 >>> num=[0,1,2,3,4,5,6,7]

 >>> num[3]

 3

 >>> num=[0,1,2,3,4,5,6,7]

 >>> num[0]

 0

 >>> num[-1]

 7

 >>> num[-3]

 5

 遍历整个列表

 num=[0,1,2,3,4,5,6,7]

 for a in num:

 print a,

 for i in range(len(num)):

 print num[i],

 输出结果:0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7

 列表操作

 更新列表

 >>> num=[0,1,2,3,4,5,6,7]

 >>> num[1]='abc'

 >>> print num

 [0, 'abc', 2, 3, 4, 5, 6, 7]

 删除列表元素

 num=[0,1,2,3,4,5,6,7]

 for i in range(len(num)):

 print num[i],

 del num[2]

 print num

 输出结果:0 1 2 3 4 5 6 7 [0, 1, 3, 4, 5, 6, 7]

 列表操作符+*

 列表对+和的操作符与字符串相似。+号用于组合列表,号用于重复列表。

 以下为+操作符

 >>> a=['a','b','c']

 >>> b=['d','e','f']

 >>> c=a+b

 >>> print c

 ['a', 'b', 'c', 'd', 'e', 'f']

 以下为*操作符

 >>> a=['a','b','c']

 >>> c=a*4

 >>> print c

 ['a', 'b', 'c', 'a', 'b', 'c', 'a', 'b', 'c', 'a', 'b', 'c']

 列表函数

 以下是列表相关函数的分类

 

 列表分类

 xmind文件可点这里下载

 以下是help(list)的结果中关于重点函数的介绍部分

 Help on list object:

 class list(object)

 | list() -> new empty list

 | list(iterable) -> new list initialized from iterable's items

 |

 | Methods defined here:

 |

 | append(...)

 | L.append(object) -> None -- append object to end

 |

 | clear(...)

 | L.clear() -> None -- remove all items from L

 |

 | copy(...)

 | L.copy() -> list -- a shallow copy of L

 |

 | count(...)

 | L.count(value) -> integer -- return number of occurrences of value

 |

 | extend(...)

 | L.extend(iterable) -> None -- extend list by appending elements from the iterable

 |

 | index(...)

 | L.index(value, [start, [stop]]) -> integer -- return first index of value.

 | Raises ValueError if the value is not present.

 |

 | insert(...)

 | L.insert(index, object) -- insert object before index

 |

 | pop(...)

 | L.pop([index]) -> item -- remove and return item at index (default last).

 | Raises IndexError if list is empty or index is out of range.

 |

 | remove(...)

 | L.remove(value) -> None -- remove first occurrence of value.

 | Raises ValueError if the value is not present.

 |

 | reverse(...)

 | L.reverse() -- reverse *IN PLACE*

 |

 | sort(...)

 | L.sort(key=None, reverse=False) -> None -- stable sort *IN PLACE*

 |

 | ----------------------------------------------------------------------

 | Data and other attributes defined here:

 |

 | __hash__ = None

 元组tuple

 Python的元组与列表类似,不同之处在于元组的元素不能修改;元组使用小括号(),列表使用方括号[];元组创建很简单,只需要在括号中添加元素,并使用逗号(,)隔开即可。

 元组初始化

 >>> t = (1, 2, 3)

 >>> print(t)

 (0, 1, 2)

 >>> t = tuple(range(3))

 >>> print(t)

 (0, 1, 2)

 元组函数

 关于tuple相关的函数可以使用help命令获得。

 help(tuple)

 Help on class tuple in module builtins:

 class tuple(object)

 | tuple() -> empty tuple

 | tuple(iterable) -> tuple initialized from iterable's items

 |

 | If the argument is a tuple, the return value is the same object.

 |

 | Methods defined here:

 |

 | count(...)

 | T.count(value) -> integer -- return number of occurrences of value

 |

 | index(...)

 | T.index(value, [start, [stop]]) -> integer -- return first index of value.

 | Raises ValueError if the value is not present.

 list和index方法的使用和list一模一样。

 命名元组

 Python有一个类似tuple的容器namedtuples(命名元组),位于collection模块中。namedtuple是继承自tuple的子类,可创建一个和tuple类似的对象,而且对象拥有可访问的属性。

 在c/c++中,对应的数据类型是结构体struct。

 struct Point//声明一个结构体类型Point,代表一个点

 {

 int x; //包括一个整型变量x

 int y; //包括一个整型变量y

 }; //最后有一个分号

 这样就声明了一个新的结构体类型Point,有了类型就可以定义结构体的变量了。

 Point p1,p2;

 在c/c++中结构体的最大作用在于组织数据,也就是对数据的封装(可以把结构体理解为特殊的类)。在python中起相同作用的就是命名元组了。命名元祖的具体使用如下

 >>> from collections import namedtuple #依赖collections包的namedtuple模块

 >>> Point = namedtuple('Point', 'x,y')

 >>> p1 = Point(11, y=22)

 >>> p1

 Point(x=11, y=22)

 >>> type(p1)

 __main__.Point

 >>> p1.x

 11

 >>> p1.y

 22

 >>> p1[0] + p1[1]

 33

 >>> a, b = p1

 >>> a, b

 (11, 22)

 字典dict

 字典相关的所有内容如下

 

 字典小结

 xmind文件可点这里下载

 help(dict)

 可以发现,dict是python內建的类,是一种key-value结构

 Help on class dict in module __builtin__:

 class dict(object)

 | dict() -> new empty dictionary

 | dict(mapping) -> new dictionary initialized from a mapping object's

 | (key, value) pairs

 | dict(iterable) -> new dictionary initialized as if via:

 | d = {}

 | for k, v in iterable:

 | d[k] = v

 | dict(**kwargs) -> new dictionary initialized with the name=value pairs

 | in the keyword argument list. For example: dict(one=1, two=2)

 |

 | Methods defined here:

 字典(dictionary)是除列表之外python中最灵活的内置数据结构类型。列表是有序的对象结合,字典是无序的对象集合。两者之间的区别在于:字典当中的元素是通过键来存取的,而不是通过偏移存取。

 dict = {'Alice': '2341', 'Beth': '9102', 'Cecil': '3258'};

 每个键与值必须用冒号隔开(:),每对用逗号分割,整体放在花括号中({})。键必须独一无二,但值则不必;值可以取任何数据类型,但必须是不可变的,如字符串,数或元组。

 字典初始化

 In [1]: d = {} #{}被字典占用了,所以set不能按照这个初始化

 In [2]: type(d)

 Out[2]: dict

 In [3]: d = dict()

 In [4]: d = {'a':1, 'b':2}

 In [5]: d = dict([('a', 1), ('b', 2)]) #可接受以元组为元素的列表

 In [6]: d

 Out[6]: {'a': 1, 'b': 2}

 In [7]: d = dict.fromkeys(range(5)) # 传入的可迭代元素为key, 值为None

 In [8]: d

 Out[8]: {0: None, 1: None, 2: None, 3: None, 4: None}

 In [9]: d = dict.fromkeys(range(5), 'abc') # 传入的可迭代元素为key, 值为'abc'

 In [10]: d

 Out[10]: {0: 'abc', 1: 'abc', 2: 'abc', 3: 'abc', 4: 'abc'}

 增加

 d[key] = value,update

 In [10]: d

 Out[10]: {0: 'abc', 1: 'abc', 2: 'abc', 3: 'abc', 4: 'abc'}

 In [11]: d['a'] = 1 # 可以直接使用key作为下标, 对某个不存在的下标赋值,会增加kv对

 In [12]: d

 Out[12]: {0: 'abc', 1: 'abc', 2: 'abc', 3: 'abc', 4: 'abc', 'a': 1}

 In [13]: d.update([('c',3),('p',0)]) # update 传入的参数需要和dict保持一致

 In [14]: d

 Out[14]: {0: 'abc', 1: 'abc', 2: 'abc', 3: 'abc', 4: 'abc', 'p': 0, 'c': 3, 'a': 1}

 In [15]: d.update([('c', 4), ('p', 4)]) #对已经存在的update时会进行修改,通常用于合并字典

 In [16]: d

 Out[16]: {0: 'abc', 1: 'abc', 2: 'abc', 3: 'abc', 4: 'abc', 'p': 4, 'c': 4, 'a': 1}

 删除

 pop 用于从字典删除一个key, 并返回其value,当删除不存在的key的时候, 会抛出KeyError。当删除不存在的key, 并且指定了默认值时, 不会抛出KeyError, 会返回默认值

 popitem 随机 返回并删除一个kv对的二元组

 clear 清空一个字典

 del语句

 In [16]: d

 Out[16]: {0: 'abc', 1: 'abc', 2: 'abc', 3: 'abc', 4: 'abc', 'p': 4, 'c': 4, 'a': 1}

 In [17]: help(d.pop)

 Help on built-in function pop:

 pop(...) method of builtins.dict instance

 D.pop(k[,d]) -> v, remove specified key and return the corresponding value.

 If key is not found, d is returned if given, otherwise KeyError is raised

 In [18]: d.pop(0) # 删除一个key,并且返回对应的value

 Out[18]: 'abc'

 In [19]: d

 Out[19]: {1: 'abc', 2: 'abc', 3: 'abc', 4: 'abc', 'p': 4, 'c': 4, 'a': 1}

 In [20]: d.pop(0) # 如果要删除的key不存在,则抛出KeyError

 ---------------------------------------------------------------------------

 KeyError Traceback (most recent call last)

  in ()

 ----> 1 d.pop(0)

 KeyError: 0

 In [21]: d.pop(0, 'default') # 如果给定default,则删除不存在的key时会返回default

 Out[21]: 'default'

 In [22]: d.pop(1, 'default') # 给定的default对存在的key不会产生影响

 Out[22]: 'abc'

 In [23]: d

 Out[23]: {2: 'abc', 3: 'abc', 4: 'abc', 'p': 4, 'c': 4, 'a': 1}

 访问

 单个元素的访问

 通过key直接访问

 通过get函数访问

 In [1]: d = {'r':2, 'd':2, 'c':3, 'p':0}

 In [2]: d

 Out[2]: {'c': 3, 'd': 2, 'p': 0, 'r': 2}

 In [3]: d['p']

 Out[3]: 0

 In [4]: d['c']

 Out[4]: 3

 In [5]: d['a']

 ---------------------------------------------------------------------------

 KeyError Traceback (most recent call last)

  in ()

 ----> 1 d['a']

 KeyError: 'a'

 In [6]: d.get('d')

 Out[6]: 2

 In [7]: d.get('a')

 In [8]: d.get('a','default')

 Out[8]: 'default'

 In [9]: help(d.setdefault)

 In [10]: d.setdefault('c','default')

 Out[10]: 3

 In [11]: d.setdefault('a','default')

 Out[11]: 'default'

 In [12]: d

 Out[12]: {'a': 'default', 'c': 3, 'd': 2, 'p': 0, 'r': 2}

 字典的遍历

 直接for in遍历

 for x in d:

 print(x)

 直接用for in 遍历字典, 遍历的是字典的key

 keys函数遍历

 d.keys() # keys 方法返回一个可迭代对象, 元素是字典所有的key

 d.keys() -> dict_keys(['d', 'a', 'c', 'r', 'p'])

 for x in d.keys():

 print(x)

 values函数遍历

 d.values() # values 方法返回一个可迭代对象,元素是字典所有的value

 d.values() -> dict_values([2, 'default', 3, 2, 0])

 for x in d.values():

 print(x)

 items函数遍历

 d.items() # items 方法返回一个可迭代对象, 元素是字典的所有(k, v)对

 d.items() -> dict_items([('d', 2), ('a', 'default'), ('c', 3), ('r', 2), ('p', 0)])

 for x in d.items():

 print(x)

 输出如下

 ('d', 2)

 ('a', 'default')

 ('c', 3)

 ('r', 2)

 ('p', 0)

 另外一种方式:解析(k,v)对

 for k, v in d.items():

 print(k, v)

 输出如下

 d 2

 a default

 c 3

 r 2

 p 0

 keys, values, items 返回的都类似生成器的对象, 它并不会复制一份内存

 Python2对应的函数返回的是列表, 会复制一份内存

 字典的限制

 字典的key不能重复

 字典的key需要可hash

 默认字典

 默认字典是defaultdict

 In [25]: from collections import defaultdict

 In [26]: d1 = {}

 In [27]: d1

 Out[27]: {}

 In [28]: d2 = defaultdict(list) # list在此是list的初始化函数

 In [29]: d2

 Out[29]: defaultdict(list, {})

 In [30]: d1['a']

 ---------------------------------------------------------------------------

 KeyError Traceback (most recent call last)

  in ()

 ----> 1 d1['a']

 KeyError: 'a'

 In [31]: d2['a']

 Out[31]: []

 default初始化的时候, 需要传入一个工厂函数, 具体的介绍可以使用help(defaultdict)来查看,当我们使用下标访问一个key的时候, 如果这个key不存在, defaultdict会自动调用初始化时传入的函数, 生成一个对象作为这个key的value。因此上面的list函数初始化的时候就生成了一个空列表。

 以下是使用dict和defaultdict的对比

 d = {}

 for k in range(10):

 for v in range(10):

 if k not in d.keys():

 d[k] = []

 d[k].append(v)

 如果这段代码使用defaultdict来写

 d = defaultdict(list)

 for k in range(10):

 for v in range(10):

 d[k].append(v)

 有序字典

 有序字典是OrderedDict(第一个字母大写)

 In [33]: from collections import OrderedDict

 In [34]: d = OrderedDict()

 In [35]: d[0] = 3

 In [36]: d[3] = 4

 In [37]: d[1] = 5

 In [38]: d

 Out[38]: OrderedDict([(0, 3), (3, 4), (1, 5)])

 In [39]: for k, v in d.items():

 ...: print(k, v)

 ...:

 0 3

 3 4

 1 5

 有序字典会保持插入的顺序

 集合set

 集合相关的所有内容如下

 

 集合小结

 xmind文件可点这里下载

 >>> help(set)

 Help on class set in module __builtin__:

 class set(object)

 | set() -> new empty set object

 | set(iterable) -> new set object

 |

 | Build an unordered collection of unique elements.

 |

 | Methods defined here:

 下面是一个小例子:

 >>> a = [11,22,33,44,11,22]

 >>> b = set(a)

 >>> b

 set([33, 11, 44, 22])

 >>> c = [i for i in b]

 >>> c

 [33, 11, 44, 22]

 定义与初始化

 In [2]: s = set()

 In [3]: s

 Out[3]: set()

 In [4]: s = {1, 2, 3}

 In [5]: s

 Out[5]: {1, 2, 3}

 In [6]: s = set(range(3))

 In [7]: s

 Out[7]: {0, 1, 2}

 增加

 增加函数有两个add和update

 add是增加单个元素,和列表的append操作类似,是原地修改

 update是增加一个可迭代对象,和列表的extend操作类似,是原地修改

 两个函数对于已经存在的元素会什么也不做

 In [7]: s

 Out[7]: {0, 1, 2}

 In [8]: s.add(3)

 In [9]: s

 Out[9]: {0, 1, 2, 3}

 In [10]: s.add(3)

 In [11]: s

 Out[11]: {0, 1, 2, 3}

 In [12]: help(s.update)

 Help on built-in function update:

 update(...) method of builtins.set instance

 Update a set with the union of itself and others.

 In [13]: s.update(range(4, 7))

 In [14]: s

 Out[14]: {0, 1, 2, 3, 4, 5, 6}

 In [15]: s.update(range(4, 9))

 In [16]: s

 Out[16]: {0, 1, 2, 3, 4, 5, 6, 7, 8}

 删除

 remove 删除给定的元素, 元素不存在抛出KeyError(需要抛出异常时使用此函数)

 discard 删除给定的元素, 元素不存在,什么也不做(和remove的唯一区别)

 pop 随机arbitrary删除一个元素并返回, 集合为空,抛出KeyError

 clear 清空集合

 In [16]: s

 Out[16]: {0, 1, 2, 3, 4, 5, 6, 7, 8}

 In [17]: s.remove(0)

 In [18]: s

 Out[18]: {1, 2, 3, 4, 5, 6, 7, 8}

 In [19]: s.remove(10)

 ---------------------------------------------------------------------------

 KeyError Traceback (most recent call last)

  in ()

 ----> 1 s.remove(10)

 KeyError: 10

 In [21]: s

 Out[21]: {1, 3, 4, 5, 6, 7, 8}

 In [22]: s.discard(1)

 In [23]: s

 Out[23]: {3, 4, 5, 6, 7, 8}

 In [24]: s.discard(10)

 In [25]: s

 Out[25]: {3, 4, 5, 6, 7, 8}

 In [26]: help(s.pop)

 Help on built-in function pop:

 pop(...) method of builtins.set instance

 Remove and return an arbitrary(随机的) set element.

 Raises KeyError if the set is empty.

 In [27]: s.pop()

 Out[27]: 3

 In [28]: s.pop()

 Out[28]: 4

 In [29]: s.clear()

 In [30]: s

 Out[30]: set()

 In [31]: s.pop()

 ---------------------------------------------------------------------------

 KeyError Traceback (most recent call last)

  in ()

 ----> 1 s.pop()

 KeyError: 'pop from an empty set'

 修改

 集合不能修改单个元素

 查找

 集合不能通过索引

 集合没有访问单个元素的方法

 集合不是线性结构, 集合元素没有顺序

 集合的pop操作的随机性可以证明集合不是线性结构的。

 In [32]: s = {1, 2, 3, 4, 5, 65, 66, 67, 88}

 In [33]: s.pop()

 Out[33]: 65

 成员运算符

 in

 not in

 用于判断一个元素是否在容器中

 In [34]: 1 in [1, 2, 3, 4]

 Out[34]: True

 In [35]: 5 in [1, 2, 3, 4]

 Out[35]: False

 In [36]: 5 not in [1, 2, 3, 4]

 Out[36]: True

 In [37]: 'love' in 'I love python'

 Out[37]: True

 In [38]: [1, 2] in [1, 2, 3, 4]

 Out[38]: False

 In [39]: 1 in (1, 2, ,3 ,4)

 File "", line 1

 1 in (1, 2, ,3 ,4)

 ^

 SyntaxError: invalid syntax

 In [40]: 1 in (1, 2, 3, 4)

 Out[40]: True

 In [41]: 1 in {1, 2, 3, 4}

 Out[41]: True

 集合的成员运算和其他线性结构的时间复杂度不同

 In [42]: lst = list(range(100000))

 In [43]: s = set(range(100000))

 In [44]: %%timeit

 ...: -1 in lst

 ...:

 1000 loops, best of 3: 1.61 ms per loop

 In [45]: %%timeit

 ...: -1 in s

 ...:

 The slowest run took 29.72 times longer than the fastest. This could mean that an intermediate result is being cached.

 10000000 loops, best of 3: 49.3 ns per loop

 由以上可见,做成员运算的时候 集合的效率远高于列表。

 In [46]: lst2 = list(range(100))

 In [47]: s = set(range(100))

 In [48]: %%timeit

 ...: -1 in lst2

 ...:

 1000000 loops, best of 3: 1.6 µs per loop

 In [49]: %%timeit

 ...: -1 in s

 ...:

 The slowest run took 20.77 times longer than the fastest. This could mean that an intermediate result is being cached.

 10000000 loops, best of 3: 56.9 ns per loop

 做成员运算时 列表的效率和列表的规模有关,而集合的效率和集合的规模无关。

 成员运算:

 集合 O(1)

 列表(线性结构) O(n)

 集合运算

 集合运算主要有:交集,差集,对称差集,并集

 python中的集合运算都对应两个版本,一个默认版本(返回新的集合),一个update版本(会更新集合本身)。

 交集

 intersection

 交集的特性:满足交换律,重载了&运算符

 In [50]: s1 = {1, 2, 3}

 In [51]: s2 = {2, 3, 4}

 In [52]: s1.intersection(s2)

 Out[52]: {2, 3}

 In [53]: s2.intersection(s1) #交集满足交换律

 Out[53]: {2, 3}

 In [54]: s1

 Out[54]: {1, 2, 3}

 In [55]: s2

 Out[55]: {2, 3, 4}

 In [56]: s1.intersection_update(s2)

 #交集的update版本,做原地修改,返回none,相当于 s1 = s1.intersection(s2)

 In [57]: s1

 Out[57]: {2, 3}

 In [58]: s2

 Out[58]: {2, 3, 4}

 In [59]: s1 = {1, 2, 3}

 In [60]: s1 & s2 #交集重载了&运算符,相当于 s1.intersection(s2)

 Out[60]: {2, 3}

 差集

 difference

 差集特性:不满足交换律,重载了-运算符

 In [61]: s1 = {1, 2, 3}

 In [62]: s2 = {2, 3, 4}

 In [63]: s1.difference(s2)

 Out[63]: {1}

 In [64]: s2.difference(s1) #差集不满足交换律

 Out[64]: {4}

 In [65]: s1.difference_update(s2) #差集的update版本,相当于 s1 = s1.difference(s2)

 In [66]: s1

 Out[66]: {1}

 In [67]: s1 = {1, 2, 3}

 In [68]: s1 - s2 #差集重载了-运算符,相当于 s1.difference(s2)

 Out[68]: {1}

 In [69]: s2 - s1

 Out[69]: {4}

 对称差集

 symmetric_difference

 对称差集特性:满足交换律,重载了^运算符

 In [70]: s1 = {1, 2, 3}

 In [71]: s2 = {2, 3, 4}

 In [72]: s1.symmetric_difference(s2)

 Out[72]: {1, 4}

 In [73]: s2.symmetric_difference(s1) #对称差集满足交换律

 Out[73]: {1, 4}

 In [74]: s1.symmetric_difference_update(s2)

 #对称差集的update版本,相当于 s1 = s1.symmetric_difference(s2)

 In [75]: s1

 Out[75]: {1, 4}

 In [76]: s1 = {1, 2, 3}

 In [77]: s1 ^ s2 #对称差集重载了^运算符,相当于 s1.symmetric_difference(s2)

 Out[77]: {1, 4}

 并集

 union,update

 并集特性:满足交换律,重载了|运算符

 In [78]: s1 = {1, 2, 3}

 In [79]: s2 = {2, 3, 4}

 In [80]: s1.union(s2)

 Out[80]: {1, 2, 3, 4}

 In [81]: s2.union(s1) #并集满足交换律

 Out[81]: {1, 2, 3, 4}

 In [82]: s1.update(s2) #update函数就是并集的update版本,相当于 s1 = s1.update(s2)

 In [83]: s1

 Out[83]: {1, 2, 3, 4}

 In [84]: s1 = {1, 2, 3}

 In [85]: s1 + s2 #并集重载的运算符不是+

 ---------------------------------------------------------------------------

 TypeError Traceback (most recent call last)

  in ()

 ----> 1 s1 + s2

 TypeError: unsupported operand type(s) for +: 'set' and 'set'

 In [86]: s1 | s2 #并集重载的运算符是|

 Out[86]: {1, 2, 3, 4}

 集合相关的判断

 issuperset,issubset

 isdisjoint:判断是否两个集合是否不相交(disjoint),有交集则返回False,没有交集则返回True

 In [87]: s1 = {1, 2, 3, 4}

 In [88]: s2 = {1, 2}

 In [89]: s1.issuperset(s2) #判断是否是超集

 Out[89]: True

 In [90]: s2.issubset(s1) #判断是否是子集

 Out[90]: True

 In [91]: s1.isdisjoint(s2) #判断是否不相交

 Out[91]: False

 In [92]: s1 = {1, 2}

 In [93]: s2 = {3, 4}

 In [94]: s1.isdisjoint(s2)

 Out[94]: True

 集合的限制

 集合的元素不能是可变的,集合的元素必须可hash

 In [95]: {'a', 'b', 'c'}

 Out[95]: {'a', 'b', 'c'}

 In [96]: {[1, 2, 3]}

 ---------------------------------------------------------------------------

 TypeError Traceback (most recent call last)

  in ()

 ----> 1 {[1, 2, 3]}

 TypeError: unhashable type: 'list'

 In [97]: {bytearray(b'abc')}

 ---------------------------------------------------------------------------

 TypeError Traceback (most recent call last)

  in ()

 ----> 1 {bytearray(b'abc')}

 TypeError: unhashable type: 'bytearray'

 In [98]: {{3, 4}}

 ---------------------------------------------------------------------------

 TypeError Traceback (most recent call last)

  in ()

 ----> 1 {{3, 4}}

 TypeError: unhashable type: 'set'

 In [99]: {(1, 2)}

 Out[99]: {(1, 2)}

 In [100]: {b'abc'}

 Out[100]: {b'abc'}

 #hash函数可以直接使用

 In [101]: hash(b'abc')

 Out[101]: 1955665834644107130

 In [102]: hash([1, 2, 3])

 ---------------------------------------------------------------------------

 TypeError Traceback (most recent call last)

  in ()

 ----> 1 hash([1, 2, 3])

 TypeError: unhashable type: 'list'

 参考资料

 念念不忘,必有回响,小伙伴们帮我点个赞吧,非常感谢。

 我是职场亮哥,YY高级软件工程师、四年工作经验,拒绝咸鱼争当龙头的斜杠程序员。

 听我说,进步多,程序人生一把梭

 如果有幸能帮到你,请帮我点个【赞】,给个关注,如果能顺带评论给个鼓励,将不胜感激。

 职场亮哥文章列表:更多文章

 本人所有文章、回答都与版权保护平台有合作,著作权归职场亮哥所有,未经授权,转载必究!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值
>