参考链接: 如何在Python中将任何数据类型更改为String
读取原始数据的时候,经常会遇到字符型变量读入变成了数值型,比较定性的就是商户ID,银行卡号这类标识型数据, 可以使用三种方法解决这个问题:
第一种:在读取数据的时候,指定数据类型
data = pd.read_csv('test.txt',sep = '|',dtype = 'str')
上面说的是, 1,读取工作文件路径中标题为test.txt的文件, 2,采用的分割符是’|’分隔符 3,所有的列读取的数据类型为字符串类型
第二种:使用转换函数: 2.1:将所有数据转换为字符串
dataframe=dataframe.astype(str)
2.2:将某列转换为字符串
data = data.astype({'outcome':'float','age':'int'})
上面代码说的是: 1,对data这个df进行某列的数据类型转换 2,将outcome这列转换为 float类型 3,将age这列转换为int类型
第三种:使用dataframe的apply函数或者map函数
data['交易金额'] = data.交易金额.map(lambda x:float(x))
上面代码说的是: 1,对data这个df进行map操作 2,构造lambda函数,返回的是float(x) 3,将返回的值赋值给data的’交易金额’列