Dijkstra 迪杰斯特拉算法

 

 原文地址: http://http://blog.csdn.net/zrjdds/article/details/6728332

 Dijkstra(迪杰斯特拉)算法是典型的最短路径路由算法,用于计算一个节点到其他所有节点的最短路径。主要特点是以起始点为中心向外层层扩展,直到扩展到终点为止。 Dijkstra算法能得出最短路径的最优解,但由于它遍历计算的节点很多,所以效率低。

  Dijkstra算法是很有代表性的最短路算法,其基本思想是:设置顶点集合 S 并不断地作贪心选择来扩充这个集合。一个顶点属于集合 S 当且仅当从源点到该顶点的最短路径长度已知。

初始时,S中仅含有源。设 u 是 G 的某一个顶点,把从源点到 u 且中间只经过 S 中顶点的路称为从源到u的特殊路径,并用数组 dist[] 记录当前每个顶点所对应的最短特殊路径长度。Dijkstra算法每次从 V-S 中取出具有最短特殊路长度的顶点 u ,将 u 添加到 S 中,同时对数组 dist[] 作必要的修改。一旦 S 包含了所有 V 中顶点,dist[]  就记录了从源到所有其它顶点之间的最短路径长度。

例如,对下图中的有向图,应用Dijkstra算法计算从源顶点1到其它顶点间最短路径的过程列在下表中。



Dijkstra算法的迭代过程:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值