有时候需要对有角度的矩形框内图像从原图片中分割出来。这里的程序思想是,先将图片进行矩形角度的旋转,使有角度的矩形处于水平状态后,根据原来坐标分割图片。
参考:http://blog.csdn.net/yjl9122/article/details/71217872
修改原来的程序:
1.旋转函数的输入仅为矩形的四点坐标
2.角度由公式计算出来
3.矩形四点pt1,pt2,pt3,pt4由txt文件读入
4.在旋转程序中还处理了顺时针和逆时针及出现矩形框翻转的问题。
# -*- coding:utf-8 -*-
import cv2
from math import *
import numpy as np
import time,math
import os
import re
'''旋转图像并剪裁'''
def rotate(
img, # 图片
pt1, pt2, pt3, pt4
):
print pt1,pt2,pt3,pt4
withRect = math.sqrt((pt4[0] - pt1[0]) ** 2 + (pt4[1] - pt1[1]) ** 2) # 矩形框的宽度
heightRect = math.sqrt((pt1[0] - pt2[0]) ** 2 + (pt1[1] - pt2[1]) **2)
print withRect,heightRect
angle = acos((pt4[0] - pt1[0]) / withRect) * (180 / math.pi) # 矩形框旋转角度
print angle
if pt4[1]>pt1[1]:
print "顺时针旋转"
else:
print "逆时针旋转"
angle=-angle
height = img.shape[0] # 原始图像高度
width = img.shape[1] # 原始图像宽度
rotateMat = cv2.getRotationMatrix2D((width / 2, height / 2), angle, 1) # 按angle角度旋转图像
heightNew = int(width * fabs(sin(radians(angle))) + height * fabs(cos(radians(angle))))
widthNew = int(height * fabs(sin(radians(angle))) + width * fabs(cos(radians(angle))))
rotateMat[0, 2] += (widthNew - width) / 2
rotateMat[1, 2] += (heightNew - height) / 2
imgRotation = cv2.warpAffine(img, rotateMat, (widthNew, heightNew), borderValue=(255, 255, 255))
cv2.imshow('rotateImg2', imgRotation)
cv2.waitKey(0)
# 旋转后图像的四点坐标
[[pt1[0]], [pt1[1]]] = np.dot(rotateMat, np.array([[pt1[0]], [pt1[1]], [1]]))
[[pt3[0]], [pt3[1]]] = np.dot(rotateMat, np.array([[pt3[0]], [pt3[1]], [1]]))
[[pt2[0]], [pt2[1]]] = np.dot(rotateMat, np.array([[pt2[0]], [pt2[1]], [1]]))
[[pt4[0]], [pt4[1]]] = np.dot(rotateMat, np.array([[pt4[0]], [pt4[1]], [1]]))
# 处理反转的情况
if pt2[1]>pt4[1]:
pt2[1],pt4[1]=pt4[1],pt2[1]
if pt1[0]>pt3[0]:
pt1[0],pt3[0]=pt3[0],pt1[0]
imgOut = imgRotation[int(pt2[1]):int(pt4[1]), int(pt1[0]):int(pt3[0])]
cv2.imshow("imgOut", imgOut) # 裁减得到的旋转矩形框
cv2.waitKey(0)
return imgRotation # rotated image
# 根据四点画原矩形
def drawRect(img,pt1,pt2,pt3,pt4,color,lineWidth):
cv2.line(img, pt1, pt2, color, lineWidth)
cv2.line(img, pt2, pt3, color, lineWidth)
cv2.line(img, pt3, pt4, color, lineWidth)
cv2.line(img, pt1, pt4, color, lineWidth)
# 读出文件中的坐标值
def ReadTxt(directory,imageName,last):
fileTxt=directory+"//rawLabel//"+imageName[:7]+last # txt文件名
getTxt=open(fileTxt, 'r') # 打开txt文件
lines = getTxt.readlines()
length=len(lines)
for i in range(0,length,4):
pt2=list(map(float,lines[i].split(' ')[:2]))
pt1=list(map(float,lines[i+1].split(' ')[:2]))
pt4=list(map(float,lines[i+2].split(' ')[:2]))
pt3=list(map(float,re.split('\n| ',lines[i+3])[:2]))
# float转int
pt2=list(map(int,pt2))
pt1=list(map(int,pt1))
pt4=list(map(int,pt4))
pt3=list(map(int,pt3))
imgSrc = cv2.imread(imageName)
drawRect(imgSrc, tuple(pt1),tuple(pt2),tuple(pt3),tuple(pt4), (0, 0, 255), 2)
cv2.imshow("img", imgSrc)
cv2.waitKey(0)
rotate(imgSrc,pt1,pt2,pt3,pt4)
if __name__=="__main__":
directory = "G://grasp//grapCode//trainImage//jpg//4"
last = 'cneg.txt'
imageName="pcd0247r.png"
ReadTxt(directory,imageName,last)
原带角度的矩形框:
旋转矩形框:
分割: