为了说明这个标准化的问题,我们以线性拟合数据举例,当然其他机器学习算法都可以类似的推广。
在用线性一次方程拟合数据的时候,我们的训练误差可能很低,但是泛化能力比较好。但对于高次方程去拟合数据时,训练误差可能很小,但是泛化误差可能很低。在高次方程中起重要作用的就是那些高次项和其系数,所以我们想要让这些能力强的项变得不那么牛,这时候我们加入了惩罚机制,对其参数进行惩罚,就是我们的正则化项啦。
当然正则化项的形式不同,求得的参数效果不一。
- L1正则化是指权值向量 w 中各个元素的绝对值之和,通常表示为