18L1和L2正规化(正则化)

本文介绍了L1和L2正则化在机器学习中的作用,特别是在线性拟合中如何避免过拟合。L1正则化导致稀疏权值矩阵,适合特征选择,而L2正则化能有效防止过拟合。
摘要由CSDN通过智能技术生成

为了说明这个标准化的问题,我们以线性拟合数据举例,当然其他机器学习算法都可以类似的推广。

在用线性一次方程拟合数据的时候,我们的训练误差可能很低,但是泛化能力比较好。但对于高次方程去拟合数据时,训练误差可能很小,但是泛化误差可能很低。在高次方程中起重要作用的就是那些高次项和其系数,所以我们想要让这些能力强的项变得不那么牛,这时候我们加入了惩罚机制,对其参数进行惩罚,就是我们的正则化项啦。

当然正则化项的形式不同,求得的参数效果不一。

L1 / L2 正规化 (Regularization)-1

  • L1正则化是指权值向量 w 中各个元素的绝对值之和,通常表示为
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值