Project Euler 78 : Coin partitions
Integer Partition
Let p(n) represent the number of different ways in which n coins can be separated into piles. For example, five coins can be separated into piles in exactly seven different ways, so p(5)=7.
| OOOOO |
| OOOO O |
| OOO OO |
| OOO O O |
| OO OO O |
| OO O O O |
| O O O O O |Find the least value of n for which p(n) is divisible by one million.
既然题目都告诉了是coin partitions,那么直接按照分硬币的思路做肯定没问题,至于硬币如何分,参见硬币划分。
题目的意思就是任意面值的硬币咯,也就是用1~n的硬币来划分n。哈哈直接套用以前的结论,验证题目中的 p(5)=7 ,5块钱用1,2,3,4,5来分,那么应该是 1(1−x)(1−x2)(1−x3)(1−x4)(1−x5) 的 x5 的系数,唔,展开即可。
什么你问我怎么展开?额,根据 11−x=1+x+x2+x3+....... 然后乘起来慢慢算。。不过我们有Mathematica大杀器,可以来方便的求系数,如下:
于是衬衫的价格是9磅15便士,应该选择B项。(答案应该是7)
看来没错,等等,似乎发现了什么惊天的秘密。
似乎,我们得到了 p(n) 的生成函数 ∑∞n=0P(n)xn=∏∞n=111−xn
于是兴冲冲的来做这题,于是瞬间懵逼,完全没法啃,每次计算都不知道要花多久,跟别谈求这样一个连区间都没有的题了。
Bing了一下,这个 p(n) 果然来头不小,上面的那个生成函数早就被欧拉发现了,又见欧拉!于是继续搜,找到了这个,Computing the Partitions of n,简单朴实的网页里给出了这样的一个公式。
其中k从1开始,直到迭代到无法迭代,即n<0。经过观察, 12k(3k+1) 是一个等差数列和的形式,其通项为 2+3k ,同理后面的那一个通项为 1+3k 。
既然是迭代公式,那么直接开好数组,一路迭代上去即可,于是代码如下:
#include <cstdio>
int* p = new int[100000]();
int PartationsP(int n)
{
int res = 0,k = 1,a = 2,b = 1,s = 1;
while (n >= a){
res += s*(p[n-a] + p[n-b]);
a += 3*k+2;
b += 3*k+1;
s *= -1;
k += 1;
}
res += (n >= b)? s*p[n-b]:0;
return res % 1000000;
}
int main()
{
p[0] = 1;
p[1] = 1;
int n = 1;
do{
n++;
p[n] = PartationsP(n);
}while (p[n] != 0);
printf("%d\n",n);
return 0;
}