终于成功配置numba cuda

本文记录了成功配置numba CUDA的过程,包括安装CUDA Toolkit、设置环境变量以及解决配置过程中遇到的问题。通过配置,numba的GPU加速功能得以启用,能够实现对Mandelbrot集的高速计算。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

很多年前就关注了numba,numba的gpu加速以前叫numba pro,是收费的,后来整合进了numba。但是很遗憾,我从来没有成功配置过numba的cuda。终于在今天,完成了这一多年来一直失败的配置过程。

numba cuda的配置

废话少说,配置cuda主要有以下几点:

  1. 安装CUDA Toolkit 我比较喜欢新的,装的是9.1版本。安装完成后安装程序会自动配置好环境变量。
  2. 设置numba所需的环境变量
    • NUMBAPRO_CUDALIB:path_to_cuda\bin (eg: D:\CUDA\v9.1\bin)
    • NUMBAPRO_NVVM: path_to_cuda\nvvm\bin\nvvm.dll (eg: D:\CppLib\CUDA\v9.1\nvvm\bin\nvvm64_32_0.dll)
    • NUMBAPRO_LIBDEVICE: path_to_cuda\nvvm\libdevice (eg: D:\CppLib\CUDA\v9.1\nvvm\libdevice)

环境变量设置好后看看NUMBAPRO_LIBDEVICE目录下是否有名为libdevice.compute_xx.10.bc (xx=20,30,35,50)的文件,如果没有可以到matlab的bin目录下去寻找。matlab里面啥都有。。啥都有。。啥都有。。

环境设置好以后就可以试试numba的example了。numba的example很简单,Mandelbrot集,链接如下:
https://github.com/harrism/numba_example

评论 9
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值