Python笔记(七) -- Pandas

Pandas是Python的开源库,提供DataFrame数据结构进行高效的数据分析。本文介绍快速入门,包括创建Series、DataFrame对象,查看数据及选择数据区块。
摘要由CSDN通过智能技术生成

Pandas是一个开放源码的Python库,它使用强大的数据结构DataFrame提供高性能的数据操作和分析工具。

一、快速入门

1.1 创建对象

Pandas有三种数据结构:Series,DataFrame,Panel。(系列,数据帧,面板)

  • Series:              均匀数据,尺寸固定大小,数据值可变
  • DataFrame:   异构数据,大小可变,数据可变
  • Panel:            异构数据,大小可变,数据可变
# 创建Series对象
s = pd.Series([1, 3, 5, np.nan, 6, 8])
print(s)
'''
0    1.0
1    3.0
2    5.0
3    NaN
4    6.0
5    8.0
'''
# 通过传递numpy数组创建DataFrame
dates = pd.date_range('20170101', periods=7)
print(dates)  
# ['2017-01-01', '2017-01-02', '2017-01-03', '2017-01-04', '2017-01-05', '2017-01-06', '2017-01-07']

df = pd.DataFrame(np.random.randn(7, 4), index=dates, columns=list('ABCD'))
print(df)
'''
                   A         B         C         D
2017-01-01 -0.761494  0.137727  0.349565  0.109320
2017-01-02 -0.327872 -1.911246  0.103956 -0.019705
2017-01-03 -0.864784 -3.354245  0.940143  0.803693
2017-01-04  1.977930  0.062642 -0.789538  0.849528
2017-01-05 -1.671936 -0.192319 -1.731093 -0.517766
2017-01-06 -1.067189 -1.387633 -0.290631  0.021469
2017-01-07 -1.456525  0.242317 -0.290660 -0.179487
'''
# 通过传递可以转换为类似系列的对象的字典来创建DataFrame
df2 = pd.DataFrame({'A': 1.,
                    'B': pd.Timestamp('20170102'),
                    'C': pd.Series(1, index=list(range(4)), dtype='float32'),
                    'D': np.array([3] * 4, dtype='int32'),
                    'E': pd.Categorical(["test", "train", "test", "train"]),
                    'F': 'foo'})

print(df2)
'''
     A          B    C  D      E    F
0  1.0 2017-01-02  1.0  3   test  foo
1  1.0 2017-01-02  1.0  3  train  foo
2  1.0 2017-01-02  1.0  3   test  foo
3  1.0 2017-01-02  1.0  3  train  foo
'''

1.2 查看数据

dates = pd.date_range('20170101', periods=7)
df = pd.DataFrame(np.random.randn(7, 4), index=dates, columns=list('ABCD'))
print(df.head())
'''
                   A         B         C         D
2017-01-01  2.061425 -0.732042  1.650411 -0.483308
2017-01-02  0.046950  1.327234  0.330287 -1.109251
2017-01-03 -0.210809  0.957618 -0.580608  0.909361
2017-01-04 -0.271967 -0.083892 -0.380328  0.348361
2017-01-05  0.356665  1.913
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值