【openmmlab概述】

AI实战营二期lec1-openmmlab概述


openmmlab是业界最有影响力的算法库之一,提供了大量开箱即用的预训练模型和算法。

MMPretrain 是一个全新升级的预训练开源算法框架,旨在提供各种强大的预训练主干网络, 并支持了不同的预训练策略。MMPretrain 源自著名的开源项目 MMClassification 和 MMSelfSup,并开发了许多令人兴奋的新功能。

  • 支持多种开箱即用的推理任务
    • 图像分类(顾名思义)
    • 图像描述(Image Caption,给一张图描述一句话)
    • 视觉问答(Visual Question Answering,图像相关的问题回答)
    • 视觉定位(Visual Grounding,图像中的目标检测?和detection有啥不一样呢,只给一个?)
    • 检索(图搜图,图搜文,文搜图,相似度?)
      https://github.com/open-mmlab/mmpretrain

MMSegmentation 是一个基于 PyTorch 的语义分割开源工具箱。MMSegmentation 支持了众多主流的和最新的检测算法,例如 PSPNet,DeepLabV3,PSANet,DeepLabV3+ 等。
语义分割是针对图片中的像素进行聚类。相同类别的部分(像素点)会被打上相同的tag。(看起来是有监督的,聚类任务)
https://github.com/open-mmlab/mmsegmentation

MMDetection 是一个基于 PyTorch 的目标检测开源工具箱。MMDetection 支持了各种不同的检测任务,包括目标检测(图像,看起来是多个目标),实例分割(视频的实时分割?数据量大),全景分割(也是分割任务,但是看起来限制更强,不允许重叠聚类),以及半监督目标检测(弱监督弱标签下的目标检测任务)。
视频中的目标检测。
https://github.com/open-mmlab/mmdetection
参考:
https://zhuanlan.zhihu.com/p/67995445
https://zhuanlan.zhihu.com/p/607453279

MMPose 是一款基于 PyTorch 的姿态分析的开源工具箱。包含了丰富的 2D 多人姿态估计、2D 手部姿态估计、2D 人脸关键点检测、133关键点全身人体姿态估计、动物关键点检测、服饰关键点检测等算法以及相关的组件和模块。
https://github.com/open-mmlab/mmpose

MMagic (Multimodal Advanced, Generative, and Intelligent Creation) 是一个供专业人工智能研究人员和机器学习工程师去处理、编辑和生成图像与视频的开源 AIGC 工具箱。包含很多模型和应用。(生成相关,看起来很多黑魔法)
MMagic 支持各种基础生成模型,包括:

  • 无条件生成对抗网络 (GANs)
  • 条件生成对抗网络 (GANs)
  • 内部学习
  • 扩散模型
  • 还有许多其他生成模型即将推出!
    MMagic 支持各种应用程序,包括:
  • 图文生成
  • 图像翻译
  • 3D 生成
  • 图像超分辨率
  • 视频超分辨率
  • 视频插帧
  • 图像补全
  • 图像抠图
  • 图像修复
  • 图像上色
  • 图像生成
  • 还有许多其他应用程序即将推出!
    https://github.com/open-mmlab/mmagic
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值