[编程题] 进制均值
题目描述
尽管是一个CS专业的学生,小B的数学基础很好并对数值计算有着特别的兴趣,喜欢用计算机程序来解决数学问题,现在,她正在玩一个数值变换的游戏。她发现计算机中经常用不同的进制表示一个数,如十进制数123表达为16进制时只包含两位数7、11(B),用八进制表示为三位数1、7、3,按不同进制表达时,各个位数的和也不同,如上述例子中十六进制和八进制中各位数的和分别是18和11,。 小B感兴趣的是,一个数A如果按2到A-1进制表达时,各个位数之和的均值是多少?她希望你能帮她解决这个问题? 所有的计算均基于十进制进行,结果也用十进制表示为不可约简的分数形式。
输入描述:
输入中有多组测试数据,每组测试数据为一个整数A(1 ≤ A ≤ 5000).
输出描述:
对每组测试数据,在单独的行中以X/Y的形式输出结果。
示例1
输入
5 3
输出
7/3 2/1
思路:
三步:
1、求一个数的从2进制开始到n-1进制表示时各个位数的数字相加和。
2、求各进制位数和的均值。用分数表示。
3、分数简化为最简分数,用最大公约数对分子分母进行约分。(辗转相除法)
代码(Java)
import java.util.Scanner;
public class Main {
public static void main(String[] args) {
Scanner scanner = new Scanner(System.in);
while (scanner.hasNext()) {
int n = scanner.nextInt();
int sum = 0;
for (int i = 2; i < n; i++) {
int temp = n;
while (temp > 0) {
sum += temp % i;
temp /= i;
}
}
int gcd = getGcd(sum, n - 2);//最大公约数
System.out.println((sum / gcd) + "/" + ((n - 2) / gcd));
}
}
/**
* 辗转相除法求最大公约数
*
* @param a 分母
* @param b 分子
* @return 最大公约数
*/
public static int getGcd(int a, int b) {
while (a % b != 0) {
int c = a % b;
a = b;
b = c;
}
return b;
}
}