京东2017校招编程题汇总-第2题

[编程题] 进制均值

题目描述

尽管是一个CS专业的学生,小B的数学基础很好并对数值计算有着特别的兴趣,喜欢用计算机程序来解决数学问题,现在,她正在玩一个数值变换的游戏。她发现计算机中经常用不同的进制表示一个数,如十进制数123表达为16进制时只包含两位数7、11(B),用八进制表示为三位数1、7、3,按不同进制表达时,各个位数的和也不同,如上述例子中十六进制和八进制中各位数的和分别是18和11,。 小B感兴趣的是,一个数A如果按2到A-1进制表达时,各个位数之和的均值是多少?她希望你能帮她解决这个问题? 所有的计算均基于十进制进行,结果也用十进制表示为不可约简的分数形式。

输入描述:

输入中有多组测试数据,每组测试数据为一个整数A(1 ≤ A ≤ 5000).

输出描述:

对每组测试数据,在单独的行中以X/Y的形式输出结果。
示例1

输入

5
3

输出

7/3
2/1

思路:

三步: 

1、求一个数的从2进制开始到n-1进制表示时各个位数的数字相加和。

2、求各进制位数和的均值。用分数表示。

3、分数简化为最简分数,用最大公约数对分子分母进行约分。(辗转相除法)

代码(Java)

import java.util.Scanner;

public class Main {
    public static void main(String[] args) {
        Scanner scanner = new Scanner(System.in);
        while (scanner.hasNext()) {
            int n = scanner.nextInt();
            int sum = 0;
            for (int i = 2; i < n; i++) {
                int temp = n;
                while (temp > 0) {
                    sum += temp % i;
                    temp /= i;
                }
            }
            int gcd = getGcd(sum, n - 2);//最大公约数
            System.out.println((sum / gcd) + "/" + ((n - 2) / gcd));
        }
    }

    /**
     * 辗转相除法求最大公约数
     *
     * @param a 分母
     * @param b 分子
     * @return 最大公约数
     */
    public static int getGcd(int a, int b) {
        while (a % b != 0) {
            int c = a % b;
            a = b;
            b = c;
        }
        return b;
    }
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值