Unique Paths II

Unique Paths II

Follow up for "Unique Paths":

Now consider if some obstacles are added to the grids. How many unique paths would there be?

An obstacle and empty space is marked as 1 and 0 respectively in the grid.

For example,

There is one obstacle in the middle of a 3x3 grid as illustrated below.

[
  [0,0,0],
  [0,1,0],
  [0,0,0]
]

The total number of unique paths is 2.

Note: m and n will be at most 100.

解题技巧:

该题的做法和Unique PathII的基本相同,需要进行一些特殊处理:

1.当obstacleGrid[i][j] = 1时,表示无法到达这个点,故A[i][j] = 0

2.当obstacleGrid[i -1][j] = 1时,表示无法从点(i - 1,  j)到达点(i ,  j),故A[i][j] = A[i][j-1]

   当obstacleGrid[i][j -1] = 1时,表示无法从点(i,  j - 1)到达点(i ,  j),故A[i][j] = A[i-1][j]

   因此状态转移方程可写成:A[i][j] = (1-obstacleGrid[i - 1][j] ) * A[i -1][j] + (1 - obstacleGrid[i][j - 1]) * A[i][j - 1]

代码:

int uniquePathsWithObstacles(vector< vector<int> >& obstacleGrid)
{
     int m, n, flagx = 0, flagy = 0;
     m = obstacleGrid.size();
     n = obstacleGrid[0].size();
     int A[m][n];
     for(int i = 0; i < m; i ++)
     {
         for(int j = 0; j < n; j ++)
         {
             if(obstacleGrid[i][j])
             {
                 A[i][j] = 0;
                 if (i == 0 && j == 0)  return 0;
             }
             else if(i == 0 && j == 0)
             {
                  A[i][j] = 1;
             }
             else if(i == 0)
             {
                  A[i][j] = A[i][j-1];
             }
             else if(j == 0)
             {
                  A[i][j] = A[i-1][j];
             }
             else A[i][j] = (1-obstacleGrid[i-1][j]) * A[i-1][j] + (1 - obstacleGrid[i][j-1]) * A[i][j-1];
         }
     }
     return A[m-1][n-1];
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值