深度学习深理解(五)-改善深度神经网络

本文探讨了机器学习中常见的偏差方差权衡问题,并介绍了最小误差及贝叶斯误差的概念。此外,还讨论了正则化的两种方法、dropout技术、训练集扩充策略以及加速训练的有效手段。对于权重值初始化与梯度校验等实践技巧也有所涉及。

总结一下今日的学习过程

偏差方差权衡问题

最有误差、贝叶斯误差

正则化两种

dropout

训练集扩充

加速训练的方法

权重值得初始化

梯度校验

美好的一天,明天加油

评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值