总结一下今日的学习过程
偏差方差权衡问题
最有误差、贝叶斯误差
正则化两种
dropout
训练集扩充
加速训练的方法
权重值得初始化
梯度校验
美好的一天,明天加油
本文探讨了机器学习中常见的偏差方差权衡问题,并介绍了最小误差及贝叶斯误差的概念。此外,还讨论了正则化的两种方法、dropout技术、训练集扩充策略以及加速训练的有效手段。对于权重值初始化与梯度校验等实践技巧也有所涉及。
总结一下今日的学习过程
偏差方差权衡问题
最有误差、贝叶斯误差
正则化两种
dropout
训练集扩充
加速训练的方法
权重值得初始化
梯度校验
美好的一天,明天加油
1649

被折叠的 条评论
为什么被折叠?