The Mathematics of Machine Learning

This post was first published on my Linkedin page and posted here as a contributed post.

In the last few months, I have had several people contact me about their enthusiasm for venturing into the world of data science and using Machine Learning (ML) techniques to probe statistical regularities and build impeccable data-driven products. However, I’ve observed that some actually lack the necessary mathematical intuition and framework to get useful results. This is the main reason I decided to write this blog post. Recently, there has been an upsurge in the availability of many easy-to-use machine and deep learning packages such as scikit-learnWeka,Tensorflow etc. Machine Learning theory is a field that intersects statistical, probabilistic, computer science and algorithmic aspects arising from learning iteratively from data and finding hidden insights which can be used to build intelligent applications. Despite the immense possibilities of Machine and Deep Learning, a thorough mathematical understanding of many of these techniques is necessary for a good grasp of the inner workings of the algorithms and getting good results.

Why Worry About The Maths?

There are many reasons why the mathematics of Machine Learning is important and I’ll highlight some of them below:

1. Selecting the right algorithm which includes giving  considerations to accuracy, training time, model complexity, number of parameters and number of features.

2. Choosing parameter settings and validation strategies.

3. Identifying underfitting and overfitting by understanding the Bias-Variance tradeoff.

4. Estimating the right confidence interval and uncertainty.

What Level of Maths Do You Need?

The main question when trying to understand an interdisciplinary field such as Machine Learning is the amount of maths necessary and the level of maths needed to understand these techniques. The answer to this question is multidimensional and depends on the level and interest of the individual. Research in mathematical formulations and theoretical advancement of Machine Learning is ongoing and some researchers are working on more advance techniques. I’ll state what I believe to be the minimum level of mathematics needed to be a Machine Learning Scientist/Engineer and the importance of each mathematical concept.

1. Linear Algebra: Someone recently said that “Linear Algebra is the mathematics of the 21st century” and I totally agree with the statement. In ML, Linear Algebra comes up everywhere. Topics such as Principal Component Analysis (PCA), Singular Value Decomposition (SVD), Eigendecomposition of a matrix, LU Decomposition, QR Decomposition/Factorization, Symmetric Matrices, Orthogonalization & Orthonormalization, Matrix Operations, Projections, Eigenvalues & Eigenvectors, Vector Spaces and Norms are needed for understanding the optimization methods used for machine learning. The amazing thing about Linear Algebra is that there are so many online resources. I have always said that the traditional classroom is dying because of the vast amount of resources available on the internet. My favorite Linear Algebra course is the one offered by MIT Courseware (Prof. Gilbert Strang).

2. Probability Theory and Statistics: Machine Learning and Statistics aren’t very different fields. Actually, someone recently defined Machine Learning as ‘doing statistics on a Mac’. Some of the fundamental Statistical and Probability Theory needed for ML are Combinatorics, Probability Rules & Axioms, Bayes’ Theorem, Random Variables, Variance and Expectation, Conditional and Joint Distributions, Standard Distributions (Bernoulli, Binomial, Multinomial, Uniform and Gaussian), Moment Generating Functions, Maximum Likelihood Estimation (MLE), Prior and Posterior, Maximum a Posteriori Estimation (MAP) and Sampling Methods.

3. Multivariate Calculus: Some of the necessary topics include Differential and Integral Calculus, Partial Derivatives, Vector-Values Functions, Directional Gradient, Hessian, Jacobian, Laplacian and Lagragian Distribution.

4. Algorithms and Complex Optimizations: This is important for understanding the computational efficiency and scalability of our Machine Learning Algorithm and for exploiting sparsity in our datasets. Knowledge of data structures (Binary Trees, Hashing, Heap, Stack etc), Dynamic Programming, Randomized & Sublinear Algorithm, Graphs, Gradient/Stochastic Descents and Primal-Dual methods are needed.

5. Others: This comprises of other Math topics not covered in the four major areas described above. They include Real and Complex Analysis (Sets and Sequences, Topology, Metric Spaces, Single-Valued and Continuous Functions, Limits), Information Theory (Entropy, Information Gain), Function Spaces and Manifolds.

Some online MOOCs and materials for studying some of the Mathematics topics needed for Machine Learning are:

Finally, the main aim of this blog post is to give a well-intentioned advice about the importance of Mathematics in Machine Learning and the necessary topics and useful resources for a mastery of these topics. However, some Machine Learning enthusiasts are novice in Maths and will probably find this post disheartening (seriously, this is not my aim). For beginners, you don’t need a lot of Mathematics to start doing Machine Learning. The fundamental prerequisite is data analysis as described in this blog postand you can learn the maths on the go as you master more techniques and algorithms.

The post The Mathematics of Machine Learning appeared first onData Science Africa.

### 回答1: 数学对机器学习具有重要的指导作用。机器学习是一种利用计算机算法来解决问题并自动改进的方法。数学作为机器学习的基础,为我们提供了理论和工具,帮助我们理解和解决许多机器学习问题。 首先,线性代数在机器学习中起着关键作用。线性代数涉及矩阵和向量的运算,而这些在机器学习中经常被用来表示数据和模型。通过线性代数,我们可以理解和操作数据集,推导和求解机器学习模型。 其次,微积分在机器学习中也非常重要。微积分涉及函数的导数和积分,而这些在优化和概率模型中扮演着重要角色。通过微积分,我们可以优化模型的参数,通过梯度下降算法来最小化损失函数,并进行机器学习模型的训练。 另外,概率论和统计学在机器学习中也扮演着重要角色。概率论帮助我们建立模型,量化不确定性,推断未知的数据。统计学则提供了评估模型性能和参数估计的方法。通过概率论和统计学,我们可以进行模型选择,避免过拟合或欠拟合,并对模型进行评估和比较。 最后,数学还有其他分支与机器学习密切相关,如图论、离散数学和信息论。图论帮助我们理解和建模复杂的关系网络。离散数学提供了解决离散问题的工具和方法。信息论则涉及消息的编码和传输,为我们提供了衡量数据的不确定性和相关性的度量方式。 总而言之,数学为机器学习提供了强大的理论基础和实用工具。它不仅帮助我们理解机器学习的原理和方法,还为我们解决实际问题提供了数学模型和算法。因此,数学是机器学习不可或缺的一部分。 ### 回答2: 数学对于机器学习非常重要。机器学习是一种通过自动学习和推理来改进系统性能的方法。它涉及到大量的数据处理、模型构建和预测分析。数学提供了机器学习的基础理论和方法。下面我会具体介绍数学在机器学习中的几个关键方面。 首先,线性代数是机器学习中的基础。矩阵和向量是线性代数的基本工具,用于表示和处理数据。在机器学习中,数据通常以矩阵和向量的形式进行处理和运算。线性代数还提供了矩阵分解和特征值分析等重要技术,用于数据降维和模型优化。 其次,概率论和统计学是机器学习的核心概念。机器学习算法的设计和评估都依赖于统计学的基本方法。概率论使我们能够对不确定性进行建模,并通过统计学方法对数据进行分析和推断。这些技术可以帮助我们理解模型的性质,评估模型的性能,并做出有根据的决策。 另外,优化理论在机器学习中起着关键的作用。机器学习算法通常通过最小化或最大化某种损失函数来优化模型。优化理论提供了一系列数学方法,用于寻找最优解。这些方法可以帮助我们找到参数的最佳取值,进而提高模型的性能。 最后,微积分也是机器学习的重要工具。微积分用于解决连续域的优化问题,例如梯度下降法。梯度下降法是一种常用的优化算法,通过迭代地调整模型参数,使得损失函数逐渐减小。 总而言之,数学为机器学习提供了理论基础和实践工具。线性代数、概率论和统计学、优化理论以及微积分等数学方法在机器学习中发挥着重要的作用,帮助我们理解和解决实际问题。因此,学习数学对于理解和应用机器学习是非常重要的。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值