Mathematics for Machine Learning--学习笔记(向量空间)

1.4 Vector Spaces(向量空间)

  在之前我们已经了解了线性方程组并知道了怎么解他们。也知道线性方程组能够用矩阵形式表示,接下来我们主要要就向量所在的结构空间。
  在第一篇博客,我们简单介绍了什么是向量。接下来将它形式化,我们首先来介绍

1.4.1 Groups(群)

  群在计算机中很重要。除了提供对集合的操作的基本框架外,在密码学、编码理论和图形学中也被大量使用。
  群的定义:我们设一个集合G,以及一个操作⊗,如果G满足一下几个特性,则(G,⊗)是一个群:

  1. 封闭性: ∀x, y ∈ G : x ⊗ y ∈ G
  2. 结合律: ∀x, y, z ∈ G : (x ⊗ y) ⊗ z = x ⊗ (y ⊗ z)
  3. 单位元:∃e ∈ G ∀x ∈ G : x ⊗ e = x且 e ⊗ x = x
  4. 逆元:∀x ∈ G ∃y ∈ G : x ⊗ y = e 且 y ⊗ x = e.
    逆元不是意味着x与1/x,而是根据⊗操作而确定的。比如说加法群中一个数的逆元一般就是他的相反数
    如果群满足交换律,则他也是一个阿贝尔群。

  让我们看一下( R n ∗ n , ⋅ R^{n*n},\cdot Rnn,):定义了矩阵乘法的方阵的集合。

  • 由矩阵乘法的定义可以得出来封闭性和结合律
  • 在乘法运算中,单位矩阵 I n I_n In就是单位元
  • 如果A是正则的,则 A − 1 A^{-1} A1 A A A的逆元。这种情况下( R n ∗ n , ⋅ R^{n*n},\cdot Rnn,)是一个群,叫做一般线性群。
      一般线性群定义:像上面这样的正则矩阵A ∈ R n ∗ n R^{n*n} Rnn的,并且定义了矩阵乘法运算的集合,叫一般线性群。当然由于矩阵乘法是不可交换的,所以他不是一个阿贝尔群。
1.4.2 Vector Spaces(向量空间)

  在我们讨论群的时候,我们只讨论了集合G内部的操作。接下来我们不光讨论集合内部的操作(向量的加法),还有集合外部的操作(向量乘以标量)。
  向量空间的定义:一个实值向量空间V= ( V , + , ⋅ ) (V,+,\cdot) (V,+,)是一个具有这两种操作的集合 V V V
+ : V × V → V +:V×V→ V +:V×VV
⋅ : R × V → V · :R×V→ V :R×VV
且他满足以下四个条件

  1. ( V , + ) (V,+) (V,+)是一个阿贝尔群
  2. 满足分配律:
  • ∀ λ ∈ R , x , y ∈ V : λ ⋅ ( x + y ) = λ ⋅ x + λ ⋅ y \forall \lambda\in R,x,y\in V:\lambda\cdot(x+y)=\lambda\cdot x+\lambda \cdot y λR,x,yV:λ(x+y)=λx+λy
  • ∀ λ , ψ ∈ R , x ∈ V : ( λ + ψ ) ⋅ x = λ ⋅ x + ψ ⋅ x \forall \lambda,\psi\in R,x\in V:(\lambda+\psi)\cdot x=\lambda\cdot x+\psi \cdot x λ,ψR,xV:(λ+ψ)x=λx+ψx(这两个一个是标量乘向量格一个是标量和乘向量)
  1. 结合律(具有外部操作的): ∀ λ , ψ ∈ R , x ∈ V : λ ⋅ ( ψ ⋅ x ) = ( λ ψ ) ⋅ x \forall \lambda,\psi\in R,x\in V:\lambda\cdot(\psi\cdot x)=(\lambda\psi)\cdot x λ,ψR,xV:λ(ψx)=(λψ)x
  2. 有关于外部操作的单位元: ∀ x ∈ V : 1 ⋅ x = x \forall x\in V:1\cdot x=x xV:1x=x
      其中 x ∈ V x\in V xV叫做向量,对于(V,+)
    来说,单位元是零向量,内部操作“+”叫做向量加法。 λ ∈ R \lambda\in R λR叫做标量,外部操作 ⋅ \cdot 叫做标量的乘法。
    下面来看几个例子:
  • V = R n , n ∈ N V= R^n,n\in N V=Rn,nN是一个向量空间。他的加法定义为:对于任意的 X , Y ∈ R n : X,Y\in R^n: X,YRn X + Y = ( x 1 , ⋯   , x n ) + ( y 1 , ⋯   , y n ) = ( x 1 + y 1 , ⋯   , x n + y n ) X+Y=(x_1,\cdots,x_n)+(y_1,\cdots,y_n)=(x_1+y_1,\cdots,x_n+y_n) X+Y=(x1,,xn)+(y1,,yn)=(x1+y1,,xn+yn);
    他的标量乘法定义为:对任意的 λ ∈ R , X ∈ R n : λ X = λ ( x 1 , ⋯   , x n ) = ( λ x 1 . ⋯   , λ x n ) \lambda\in R,X\in R^n: \lambda X=\lambda(x_1,\cdots,x_n)=(\lambda x_1.\cdots,\lambda x_n) λR,XRn:λX=λ(x1,,xn)=(λx1.,λxn)
  • V = R m × n , m , n ∈ N V=R^{m×n},m,n\in N V=Rm×nm,nN也是一i个向量空间。他的加法定义为:对于任意的 A , B ∈ V : A + B = [ a 11 + b 11 ⋯ a 1 n + b 1 n ⋮ ⋮ a m 1 + b m 1 ⋯ a m n + b m n ] A,B\in V: A+B=\left[ \begin{matrix} a_{11}+b_{11}& \cdots & a_{1n}+b_{1n}\\ \vdots& & \vdots\\ a_{m1}+b_{m1}& \cdots & a_{mn}+b_{mn} \end{matrix} \right] A,BV:A+B=a11+b11am1+bm1a1n+b1namn+bmn;标量乘法定义为: λ A = [ λ a 11 ⋯ λ a 1 n ⋮ ⋮ λ a m 1 ⋯ λ a m n ] \lambda A=\left[ \begin{matrix} \lambda a_{11}& \cdots & \lambda a_{1n}\\ \vdots& & \vdots\\ \lambda a_{m1}& \cdots &\lambda a_{mn} \end{matrix} \right] λA=λa11λam1λa1nλamn
    注意:当(V,+,·)表示标准向量乘法和标量加法时以后我们就用V表示(V,+,·);用 x x x表示向量。且不再区分 R n 和 R n × 1 R^n和R^{n×1} RnRn×1
1.4.3 向量子空间

  字面意思,如果存在V是一个向量空间,而 U ∈ V U\in V UV也满足成为跟V上的操作一样向量空间的定义,(就是说V有矩阵乘而U也有这样,可以把他看成一个在V内部缩小的V)则U就是V的向量子空间。向量子空间是机器学习中的一个重要概念,之后咱们会学到。
如果U是V的向量子空间则U就能继承V的许多性质,比如阿贝尔群啊结合律,单位元等等。而为了确定U是不是V的向量子空间,我们必须要证明

  1. U ≠ 0 U\neq 0 U=0且零元在U内部
  2. 跟V一样,进行外部运算和内部运算结果都 ∈ \in U
  • 对于每个向量空间V,他的平凡子空间是V和{0}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值