在实现一个快速实现的方法时候,我们首先采用一种比较传统的方法,即暴力算法,在对当前元素进行操作的时候,每次都遍历前面的所有元素,其时间复杂度为O(n^2),实现代码如下:
1)暴力求解
int findLongest(vector<int> A, int n) {
vector<int> d(n, 0);
d[0] = 1;
int max_all = 1;
for (int i = 1; i < n; i++){
int max_item = 0;
for (int j = 0; j < i; j++){
if (A[j]<A[i]) max_item = d[j]>max_item ? d[j] : max_item;
}
d[i] = max_item + 1;
if (max_all < d[i]) max_all = d[i];
}
return max_all;
}
即在每次进行操作的时候,我们都检查它前面的元素是不是比它小,这样比较耗时,那么有没有一种比较快速的方法呢?答案是肯定的!
2)快速求解:
通过创建一个辅助数组h[],h[j]的意义为以A[j+1]元素结尾的最长递增子序列的末尾元素,可以将时间复杂度降为O(nlgn),举例如下:
int findLongest_NlgN(vector<int> A, int n){
vector<int> d(n, 0);
int size = A.size();
int h[100] = { -1 };
int j = 0;
h[0] = A[0];
for (int i = 1; i < n; i++){
if (A[i]>h[j]) h[++j] = A[i];
else{
int l = 0, r = j;
while (l <= r){
int m = (l+r) / 2;
if (h[m] > A[i]) r = m-1;
else l = m + 1;
}
h[l] = A[i];
}
}
for (int i = 0; i < 100 && h[i] != 0; i++){
cout << h[i] << " ";
}
cout << endl;
return j + 1;
}
现在我们来看看运行结果:
结果完美吻合,验证了我们思路和程序的准确性!