在机器学习中,我们总会提到交叉验证,那么交叉验证到底是什么呢?下面我们就来进行一个简短的介绍!
原因:
在机器学习里,一般我们并不把所有的训练集用于训练模型,而是将训练集分成训练集和验证集,原因在于,如果我们将所有的训练集用于训练模型的话,直到在测试集阶段才能进行检验我们训练出来的模型的性能,有可能耗费了大量的资源之后得到一个很糟糕的模型,如果我们在训练阶段就可以进行检验,挑选合适的参数进行模型的训练,岂不是可以解决这个问题,没错,正是基于这个思路,大佬们提出了交叉验证(cross-validation)。
方法:
1)将集合分为n个训练集和测试集(),进行训练,这样我们可以得到n个模型;
2)在对应的验证集上进行验证,这样可以得到不同模型在验证集上的表现,具体的就是不同模型在验证集上的误差ei(i=1~n);
3)将误差进行排序,选定最优模型所对应的参数,然后用所有的数据再次进行训练得到一个新的模型,所以虽然中间训练了多个模型,但最后我们只取最优的模型的参数,用全部数据去训练一个的新的模型,最后的输出模型为新的模型!
代表性:
1)LOOVC(Leave-one-out cross-validation),留一验证,注意,这样会得到n个[n-1,1]的模型,其中[n-1,1]为对应的训练集和验证集的样本数,但这样需要的运算量非常大!
2)K-fold Cross Validation,即将数据分为k折,会得到k个[(k-1)*N/k,N/k]的模型,其中[(k-1)*N/k,N/k]为对应的训练集和验证集的样本数,但此时k的选取是一个很重要的参数,k值的选取直接影响我们所训练的模型的偏差-方差(bias-variance tradeoff)之间的平衡,一般我们对k-fold,我们根据经验选取5或者10。
更多:
交叉验证