xgboost简单介绍

XGBoost全名为(extreme gradient boosting),意译为极端梯度增强算法,看到里面有一个简单的boosting算法,大家是否想到了Adaboosting算法呢?其实就我个人理解,XGBoost其实是结合了bagging和boosting两者的优点然后进行结合而得到的一种超强的新型算法,作为Kaggle的大杀器,它有足够的能力去学习各种各样不规则的特征。
现在我们就来简单的介绍一下XGBoost原理:
作为boosting算法,第t棵树模型的建立时,第t-1棵树已经建立并已经训练好(迭代,可以看做类似与RNN的流程),然后用该模型所产生的误差作为参考来建立第t棵数。

这里写图片描述
PS:
xgboost和GBDT一样,都是利用残差进行学习的,具体请参照下面的第一个博客所写的。
更多请参考:
XGBoost原理介绍——个人理解版
GBDT与XGBoost pdf讲解

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值