Notes

本文探讨了如何使用图神经网络解决知识图谱补全中的OOD(Out-of-Knowledge-Base)实体问题,即如何处理训练阶段未观察到的实体。通过利用辅助知识图谱,该方法能在不重新训练的情况下为OOD实体计算嵌入表示。
摘要由CSDN通过智能技术生成

Notes1:

Knowledge Transfer for Out-of-Knowledge-Base Entities:A Graph Neural Network Approach

Introduction

This paper address the out-of-knowledge-base(OOKB) entity problem in KBC: how to answer queries concering
test entities not observed at training time.

Setting and problems

Existing embedding-based KBC models assume that all test entities are available at training time

OOKB entity problem arise when new entities(OOKB entities) occur in the relation triplets that are given to the system after training.

To solve the OOKB entity problem without retraining,we use graph neural networks(Graph-NNs) to compute the embeddings of OOKB entities,exploiting the limited auxiliary knowledge provided at the test time.

OOKB Entity Problem

Let E be a set of entities,and R be a set of relations.

In addtion to knowledge base G observed at training time,new triplets Gaux are given at test time,with
E(Gaux)⊄E(G) and R(Gaux)R(G) .Thus, Gaux contains new entities EOOKB=E(Gaux)E(G) ,but no new relations are involved.

triplets in Gaux
Every triplet in Gaux contains exactly one OOKB entity fro EOOKB and one entity from E(G) ;that is ,the additional triplets Gaux represent edges bridging E(G) and EOOKB in the combined knowledge graph GGaux .

Motivation

want to use the information already have in G to deal with OOKB entities,with the help of the added knowledge graph Gaux

Graph-NN Model

Propagation Model on a Knowledge Graph

Let G be a knowledge graph, eE(G) be an entity,and veRd be the d-dimensional representation vector of e.

The propagation model definition:
ve=(h,r,e)Nhead(e)Thead(vh;h,r,e)+(e,r,t)Ntail(e)Ttail(vt;e,r,t)

where head neighborhood Nhead and tail neighborhood Ntail are Nhead(e)={(h,r,e)(h,r,e)G} and Ntail(e)={(e,r,t)(e,r,t)G}

Modified Model(in this paper):

Shead(e)={Thead(vh,h,r,e)(h,r,e)Nh(e)}
Stail(e)={Ttail(vt,e,r,t)(e,r,t)Nt(e)}
ve=P(Shead(e)Stail(e))
Transition Function used in experiment:
the aim of transition function T is to modify the vector of a neighbor node to reflect the relations between the current node and the neighbor.
Thead(vh;h,r,e)=ReLU(BN(Aheadrvh))
Ttail(vt;h,r,e)=ReLu(BN(Atailrvt))

where AR(d×d) is a matrix of model parameters,and BN indicates batch normalization.

Pooling Function:
To extract share aspects from a set of vectors.

P(S)=Ni=1xi sum pooling
P(S)=1NNi=1xi average pooling
P(S)=max({xi}Ni=1) max pooling

Output Model

Using a TransE-based objective function as the output model.

Absolute-Margin Objective Function:

L=Ni=1f(hi,ri,ti)+[τf(hi,ri,ti)]+

OOKB Entity Experiment

construct dataset

1.choosing OOKB entities.Selected N=1000,3000,5000 triplets from WN11 test file.
Head setting:all head entities in the N triplets are regarded as candidate OOKB entities.
Tail setting is similar,but with the tail entities regarded as candidates.
In the Both setting,all entities appearing as either a head or tail are the candidates.

2.Filtering and spliting triplets.Using the OOKB entities, the original training dataset
was split into the training dataset and the auxiliary dataset.The OOKB training dataset(triplets) did not
contain OOKB entities and the auxiliary dataset(triplets) contain one OOKB entity and non-OOKB entity.

For the test triplets,they used the same first N triplets in the WN11 test file that used in Step 1 and the
triplets did not contain any OOKB entities were removed. For validation triplets they simply removed
the triplets containing OOKB entities from WN11 valid file.

github address: http://github.com/takou-h/GNN-for-OOKB.

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值