描述
万圣节的早上,小Hi和小Ho在经历了一个小时的争论后,终于决定了如何度过这样有意义的一天——他们决定去闯鬼屋!
在鬼屋门口排上了若干小时的队伍之后,刚刚进入鬼屋的小Hi和小Ho都颇饥饿,于是他们决定利用进门前领到的地图,找到一条通往终点的最短路径。
鬼屋中一共有N个地点,分别编号为1..N,这N个地点之间互相有一些道路连通,两个地点之间可能有多条道路连通,但是并不存在一条两端都是同一个地点的道路。那么小Hi和小Ho至少要走多少路程才能够走出鬼屋去吃东西呢?
提示:顺序!顺序才是关键。
输入
每个测试点(输入文件)有且仅有一组测试数据。
在一组测试数据中:
第1行为4个整数N、M、S、T,分别表示鬼屋中地点的个数和道路的条数,入口(也是一个地点)的编号,出口(同样也是一个地点)的编号。
接下来的M行,每行描述一条道路:其中的第i行为三个整数u_i, v_i, length_i,表明在编号为u_i的地点和编号为v_i的地点之间有一条长度为length_i的道路。
对于100%的数据,满足N<=10^3,M<=10^4, 1 <= length_i <= 10^3, 1 <= S, T <= N, 且S不等于T。
对于100%的数据,满足小Hi和小Ho总是有办法从入口通过地图上标注出来的道路到达出口。
输出
对于每组测试数据,输出一个整数Ans,表示那么小Hi和小Ho为了走出鬼屋至少要走的路程。
样例输入
5 23 5 4
1 2 708
2 3 112
3 4 721
4 5 339
5 4 960
1 5 849
2 5 98
1 4 99
2 4 25
2 1 200
3 1 146
3 2 106
1 4 860
4 1 795
5 4 479
5 4 280
3 4 341
1 4 622
4 2 362
2 3 415
4 1 904
2 1 716
2 5 575
样例输出
123
思路:
dijkstra模版题,vector邻接表版本
#include <iostream>
#include <cstring>
#include <vector>
#include <set>
#include <map>
#include <queue>
using namespace std;
#define INF 0x3FFFFFFF
typedef pair<int,int> PII;//需要用到pair
const int MAXN = 1010;//满足需求即可
vector<PII> G[MAXN];//用到vector//
//初始化
void init(int n){
for(int i=0;i<n;i++)G[i].clear();//清空vector数组(相当于二维数组)
}
//加边
void add_edge(int u,int v,int d){
G[u].push_back(make_pair(v,d));//将v,d存放到vector[u]中,类似于邻接表,将所有与u相连的点串起来
G[v].push_back(make_pair(u,d));
}
int vis[MAXN];
int dis[MAXN];
void dijkstra(int s,int n){
memset(vis,0,sizeof(vis));
for(int i = 1; i <= n; ++i)dis[i] = (i == s ? 0 : INF);
for(int i = 1; i <= n; ++i){
int x, minn = INF;
for(int j = 1;j <= n; ++j){//与邻接矩阵的算法类似
if(!vis[j]&&dis[j]<=minn){
x = j;
minn = dis[j];
}
}
vis[x] = 1;
for(int j = 0;j < G[x].size(); ++j){//每一条边都要更新
int y = G[x][j].first;//取pair值的方式xx.first xx.second
int d = G[x][j].second;
dis[y] = min(dis[y], dis[x] + d);
}
}
}
int main()
{
int n,m,s,t;
int u,v,w;
cin >> n >> m >> s >> t;
for (int i = 0; i < m; ++i) {
cin >> u >> v >> w;
add_edge(u,v,w);
}
dijkstra(s,n);
cout << dis[t] << endl;
return 0;
}