矩阵快速幂——P1962 斐波那契数列、P1939 矩阵加速(数列)

矩阵快速幂

  1. 矩阵快速幂适用于线性递推数列
  2. 矩阵乘法不满足交换律
  3. 利用二进制分解和矩阵乘法的结合性质,来大幅减少计算量
  4. 在计算过程中,从高位到低位依次处理二进制位:

  • 初始化结果矩阵为单位矩阵。
  • 若当前位为 1,则将当前结果矩阵乘以原矩阵。
  • 每次循环将原矩阵平方。

运行代码

typedef long long ll;
const int mod = 1e9 + 7;
struct matrix {
    ll c[3][3];
    matrix() {
        memset(c, 0, sizeof c);
    }
}A, F;
ll n, k;
matrix operator*(matrix& x, matrix& y) {
    matrix t;
    for (int i = 1; i <= n; i++)
        for (int j = 1; j <= n; j++)
            for (int k = 1; k <= n; k++)
                t.c[i][j] = (t.c[i][j] + x.c[i][k] * y.c[k][j]) % mod;
    return t;
}
void quick_pow(ll k) {//快速幂
    for (int i = 1; i <= n; i++)
        F.c[i][i] = 1;
    while (k) {
        if (k & 1)F = F * A;
        A = A * A;
        k >>= 1;
    }
}

代码思路

数据类型和常量定义

  • typedef long long ll:定义了一个长整型别名 ll,方便后续使用。
  • const int mod = 1e9 + 7:定义了一个常量 mod,用于后续的取模运算。

结构体定义

  • 定义了一个名为 matrix 的结构体来表示矩阵。
    • 内部使用二维数组 ll c[3][3] 存储矩阵元素。
    • 构造函数将矩阵元素初始化为 0。

运算符重载:重载了 * 运算符,用于实现两个矩阵的乘法运算,并对结果取模 mod 。

快速幂函数 quick_pow

  • 初始化矩阵 F 为单位矩阵。
  • 通过一个循环,根据 k 的二进制位进行计算。
    • 当当前二进制位为 1 时,将 F 乘以 A ,并更新 F 。
    • 每次循环将 A 自乘(平方)。
    • 通过不断右移 k ,逐位处理,最终实现快速计算矩阵的 k 次幂。

P1962 斐波那契数列

题目描述

P1962 斐波那契数列 - 洛谷 | 计算机科学教育新生态 (luogu.com.cn)

运行代码

#include<iostream>
using namespace std;
#include<algorithm>
#include<string.h>
typedef long long ll;
const int N = 1e9 + 7;
struct matrix {
    ll c[3][3];
    matrix() {
        memset(c, 0, sizeof c);
    }
}F, A;//F为斐波那契矩阵,A为构造矩阵 
ll n;
matrix operator*(matrix& x, matrix& y) {//矩阵乘法
    matrix t;//临时矩阵
    for (int i = 1; i <= 2; i++)
        for (int j = 1; j <= 2; j++)
            for (int k = 1; k <= 2; k++)
                t.c[i][j] = (t.c[i][j] + x.c[i][k] * y.c[k][j]) % N;
    return t;
}
void quick_pow(ll n) {
    F.c[1][1] = F.c[1][2] = 1;
    A.c[1][1] = A.c[1][2] = A.c[2][1] = 1;
    while (n) {
        if (n & 1) F = F * A;
        A = A * A;
        n >>= 1;
    }
}
int main() {
    scanf_s("%lld", &n);
    if (n <= 2) {
        puts("1"); return 0; 
    }
    quick_pow(n - 2);
    cout << F.c[1][1];
    return 0;
}

代码思路

调用快速矩阵幂的模板

主函数 main

  • 读取输入的整数 n 。
  • 对于 n <= 2 的情况,直接输出 1 并结束程序。
  • 对于 n > 2 的情况,调用 quick_pow(n - 2) 进行计算。
  • 最后输出 F 矩阵的特定元素 F.c[1][1] 。

例如,如果输入 n = 5 :

  • 首先在 quick_pow 函数中,初始化 F 和 A 矩阵。
  • 3 的二进制为 11,第一次循环,最低位为 1,所以 F = F * A 。
  • 然后 A = A * A 。
  • 第二次循环,最高位为 1,F = F * A ,得到最终的 F 矩阵。

P1939 矩阵加速(数列)

题目描述

P1939 矩阵加速(数列) - 洛谷 | 计算机科学教育新生态 (luogu.com.cn)

运行代码

#include<iostream>
using namespace std;
#include<algorithm>
#include<string.h>
typedef long long ll;
const int N = 1e9 + 7;
struct matrix {
    ll c[4][4];
    matrix() {
        memset(c, 0, sizeof c);
    }
}F, A;//F为斐波那契矩阵,A为构造矩阵 
ll n,T;
matrix operator*(matrix& x, matrix& y) {//矩阵乘法
    matrix t;//临时矩阵
    for (int i = 1; i <= 3; i++)
        for (int j = 1; j <= 3; j++)
            for (int k = 1; k <= 3; k++){
                t.c[i][j] += x.c[i][k] * y.c[k][j] % N;
    t.c[i][j] %= N;
}
    return t;
}
void quick_pow(ll n) {
    F.c[1][1] = F.c[1][2] = F.c[1][3] = 1;
    memset(A.c, 0, sizeof(A.c));
    A.c[1][1] = A.c[1][2] = A.c[2][3] = A.c[3][1] = 1;
    while (n) {
        if (n & 1) F = F * A;
        A = A * A;
        n >>= 1;
    }
}
int main() {
    scanf_s("%lld", &T);
    while (T--) {
        scanf_s("%lld", &n);
    if (n <= 3) {
        puts("1"); 
        continue;
    }
    quick_pow(n -3);
    cout << F.c[1][1]<<endl;
    }
    return 0;
}

代码思路

调用快速矩阵幂的模板

主函数 main

  • 读取测试用例的数量 T 。
  • 在一个循环中处理每个测试用例:
    • 读取当前测试用例的输入 n 。
    • 对于 n <= 3 的情况,直接输出 1 并继续下一个测试用例。
    • 对于 n > 3 的情况,调用 quick_pow(n - 3) 进行计算,然后输出 F 矩阵的特定元素。

例如,如果输入 T = 2 ,第一个测试用例 n = 5 ,第二个测试用例 n = 7 :

  • 对于第一个测试用例,初始化 F 和 A 矩阵,计算 n - 3 = 2 的快速幂,得到更新后的 F 矩阵,并输出其特定元素。
  • 对于第二个测试用例,同样的流程进行处理。
  • 26
    点赞
  • 6
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
斐波那契数列可以用矩阵快速幂的方法求解,时间复杂度为O(logn)。下面是使用矩阵快速幂求解斐波那契数列第n项的C++代码。 ```c++ #include <iostream> #include <vector> using namespace std; // 矩阵乘法 vector<vector<long long>> matrixMultiply(vector<vector<long long>>& a, vector<vector<long long>>& b) { int m = a.size(); int n = b[0].size(); int l = b.size(); vector<vector<long long>> c(m, vector<long long>(n, 0)); for (int i = 0; i < m; i++) { for (int j = 0; j < n; j++) { for (int k = 0; k < l; k++) { c[i][j] += a[i][k] * b[k][j]; } } } return c; } // 矩阵快速幂 vector<vector<long long>> matrixPow(vector<vector<long long>>& a, int n) { vector<vector<long long>> ans = {{1, 0}, {0, 1}}; // 单位矩阵 while (n > 0) { if (n & 1) ans = matrixMultiply(ans, a); a = matrixMultiply(a, a); n >>= 1; } return ans; } // 斐波那契数列第n项 long long fib(int n) { if (n == 0) return 0; vector<vector<long long>> a = {{1, 1}, {1, 0}}; vector<vector<long long>> b = {{1}, {0}}; vector<vector<long long>> c = matrixMultiply(matrixPow(a, n - 1), b); return c[0][0]; } int main() { int n; cout << "请输入n的值: "; cin >> n; cout << "斐波那契数列第" << n << "项的值为: " << fib(n) << endl; return 0; } ``` 该方法的思路是将斐波那契数列的递推式转化为矩阵形式,即 ``` | F(n) | | 1 1 | | F(n-1) | | F(n-1) | = | 1 0 | * | F(n-2) | ``` 然后通过矩阵快速幂的方式求出矩阵A的n-1次方,再用矩阵A的n-1次方乘以向量B,得到结果矩阵C,矩阵C的第一行第一列就是斐波那契数列的第n项的值。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

筱姌

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值