cv
deep_learninger
这个作者很懒,什么都没留下…
展开
-
计算机视觉(ComputerVision, CV)相关领域的网站链接
http://blog.sina.com.cn/s/blog_6bfa03cf0101hqy2.html 转载于以下链接是转载的关于计算机视觉(ComputerVision, CV)相关领域的网站链接,其中有CV牛人的主页,CV研究小组的主页,CV领域的paper,代码,CV领域的最新动态,国内的应用情况等等。打算从事这个行业或者刚入门的朋友可以多关注这些网站,多了解一些CV的具体应原创 2016-01-26 14:19:19 · 5380 阅读 · 0 评论 -
C++处理JSON数据和在face++ 调用中的使用
使用C++处理JSON数据交换格式一、摘要 JSON的全称为:JavaScript Object Notation,顾名思义,JSON是用于标记Javascript对象的,JSON官方的解释为:JSON是一种轻量级的数据传输格式。本文并不详细介绍JSON本身的细节,旨在讨论如何使用C++语言来处理JSON。关于JSON更具体的信息,可参见JSON官网:http://www.json.原创 2016-03-28 17:29:34 · 3834 阅读 · 2 评论 -
dblp 介绍 使用,计算机领域内对研究的成果以作者为核心的一个计算机类英文文献的集成数据库系统
http://dblp.uni-trier.de/pers/hd/s/Sun_0004:Jun 网站简介编辑DBLP是计算机领域内对研究的成果以作者为核心的一个计算机类英文文献的集成数据库系统。按年代列出了作者的科研成果。包括国际期刊和会议等公开发表的论文。DBLP没有提供对中文文献的收录和检索功能,国内的权威期刊及重要会议的论文缺乏一个类似的集成检索系统。DBLP所收录的原创 2016-02-25 15:43:03 · 8666 阅读 · 1 评论 -
ensemble 总结 Kaggle-Ensemble-Guide
今天看到Kaggle-Ensemble-Guide ,里面有详细的介绍,也有代码,https://github.com/vzhangmeng726/Kaggle-Ensemble-Guide 网址, http://mlwave.com/kaggle-ensembling-guide/ 使用介绍。里面主要讲了4种方法:1、Voting ensembles.,,A原创 2016-03-07 15:56:13 · 7672 阅读 · 0 评论 -
MFC编个对话框,能够实时显示摄像头捕捉的镜头, 点击确定,保存当前图像。
MFC编个对话框,能够实时显示摄像头捕捉的镜头, 点击确定,保存当前图像。然后点击检测按钮(调用face++ 人脸识别接口识别人脸的性别年龄情绪等)现在在vc上采集视频常用的方法有三:vfw,directshow,opencv 你是要进行图像处理的话推荐opencv(具体参考:于仕琪,opencv教程基础篇中的例3-6,稍作修改,估计就能用于你的工程) 下面贴出我自己编原创 2016-03-18 16:29:21 · 3812 阅读 · 0 评论 -
OCR 文本方向和语种识别 总结
https://www.researchgate.net/profile/Lluis_Gomez2/publications Lluis Gomez 介绍,从icdar2013 到 icdar 2015 , 主要做文本方向和语种识别, 这里边有他最近的论文,可以看他的论文,跟进他的研究成果。http://arxiv.org/pdf/1602.07480.pdf 论文:Boosti原创 2016-03-17 16:15:30 · 4707 阅读 · 0 评论 -
cnn 调参经验
这个问题,其实我也是初学,水平有限,说说自己的感觉吧。在潜意识里,我始终觉得神经网络的东西和中医看病有种隐隐的联系,经验(自己的和别人的)、感觉这些谈不上有什么标准化的东西确是挺重要的东西。基于此,调试一个神经网络,就需要首先熟悉网络的每个层、每个参数的作用是什么,为什么要有这样的设置,通常researcher们都基于什么样的原则来设置?其次,多自己动手设置一下,找找感觉,看看不同的参数设置会产生原创 2016-01-18 11:48:37 · 7636 阅读 · 1 评论 -
LBP基本原理与特征分析
转自:http://blog.csdn.net/songzitea/article/details/17686135背景介绍局部二值模式(Local binary patterns,LBP)是机器视觉领域中用于描述图像局部纹理特征的算子,具有旋转不变性和灰度不变性等显著的优点。它是由T. Ojala, M.Pietikäinen, 和 D. Harwood [1][2]在199原创 2016-03-17 14:37:32 · 23709 阅读 · 0 评论 -
机器学习 深度学习 计算机视觉 开源代码总结
持续跟新可以看看这个 http://blog.csdn.net/workerwu/article/details/46537849场景识别: SegNet: A Deep Convolutional Encoder-Decoder Architecture for Robust Semantic Pixel-Wise Labelling https://github.c原创 2016-03-29 15:39:58 · 2382 阅读 · 0 评论 -
机器学习 深度学习 计算机视觉 资料汇总
Deep Learning(深度学习)ufldl的2个教程(这个没得说,入门绝对的好教程,Ng的,逻辑清晰有练习):一ufldl的2个教程(这个没得说,入门绝对的好教程,Ng的,逻辑清晰有练习):二Bengio团队的deep learning教程,用的theano库,主要是rbm系列,搞python的可以参考,很不错。deeplearning.net主页,里面包含的原创 2016-03-29 15:37:02 · 2088 阅读 · 1 评论 -
计算机视觉:让冰冷的机器看懂多彩的世界
计算机视觉:让冰冷的机器看懂多彩的世界微软亚洲研究院 发表于 2015-02-11 21:47http://www.guokr.com/article/439945/ 转载于这篇博客2010年,来自斯坦福大学、普林斯顿大学及哥伦比亚大学的科学家们启动ImageNet大规模视觉识别挑战赛(ImageNet Large Scale V转载 2016-03-02 16:25:30 · 983 阅读 · 0 评论 -
Generative Modeling of Convolutional Neural Networks
http://research.microsoft.com/en-us/people/jifdai/ MRSA 大牛博客地址,抽时间好好学习一下他的论文Generative Modeling of Convolutional Neural Networks原创 2016-01-26 14:31:51 · 865 阅读 · 0 评论 -
多通道(比如RGB三通道)卷积过程
今天一个同学问 卷积过程好像是对 一个通道的图像进行卷积, 比如10个卷积核,得到10个feature map, 那么输入图像为RGB三个通道呢,输出就为 30个feature map 吗, 答案肯定不是的, 输出的个数依然是 卷积核的个数。 可以查看常用模型,比如lenet 手写体,Alex imagenet 模型, 每一层输出feature map 个数 就是该层卷积核的个数。1、原创 2016-04-11 22:04:20 · 108532 阅读 · 23 评论