Feature Transfer Learning for Deep Face Recognition with Long-Tail Data 论文阅读笔记

 

问题: 训练人脸模型需要依赖大规模数据,比如 MsCeleb1M,deepglint, WebFace 等,但这些大规模数据存在严重的long-tail 问题。 简单说,20%人占了80%数据。   这个问题普遍存在,也有不少paper解决该问题。 比如range loss 等。 

本文idea: 将GAN 网络方法融合到主流的人脸识别模型中, 在特征领域进行迁移学习。  

本文方法比较新颖,先简单记录一下,抽时间精读时,再做详细的笔记。

 

本文

 

 

 

 

 

 

 

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值