问题: 训练人脸模型需要依赖大规模数据,比如 MsCeleb1M,deepglint, WebFace 等,但这些大规模数据存在严重的long-tail 问题。 简单说,20%人占了80%数据。 这个问题普遍存在,也有不少paper解决该问题。 比如range loss 等。
本文idea: 将GAN 网络方法融合到主流的人脸识别模型中, 在特征领域进行迁移学习。
本文方法比较新颖,先简单记录一下,抽时间精读时,再做详细的笔记。
本文
问题: 训练人脸模型需要依赖大规模数据,比如 MsCeleb1M,deepglint, WebFace 等,但这些大规模数据存在严重的long-tail 问题。 简单说,20%人占了80%数据。 这个问题普遍存在,也有不少paper解决该问题。 比如range loss 等。
本文idea: 将GAN 网络方法融合到主流的人脸识别模型中, 在特征领域进行迁移学习。
本文方法比较新颖,先简单记录一下,抽时间精读时,再做详细的笔记。
本文