http://poj.org/problem?id=3207
题目描述:
一个圆上有n个点按顺时针排列,然后有m条线,m条线要么在圆内,要么在圆外。对于给定的m条线能否满足任意的两条线都不相交
分析:
对于第i条线,点i表示在圆内,i’表示在圆外。那么对于两条线i和j的关系为i xor j=1
那么两条线怎样才能相交呢?很明显 a< c < b< d,其中a,b为i线的端点,c,d为j线的端点
连边为i->j’, j->i’, i’->j, j’->i
//1604K 32MS C++
#include<iostream>
#include<cstring>
#include<cstdio>
#include<algorithm>
const int MAXN=1010;
const int MAXM=1001000;
using namespace std;
int low[MAXN],dfn[MAXN],sccno[MAXN],scc_cnt,dfs_clock,Stack[MAXN],top;
bool instack[MAXN];
int x[MAXN],y[MAXN];
struct Edge{
int to,next;
}edge[MAXM<<1];int head[MAXN],tot;
void addedge(int u,int v){
edge[tot].to=v;edge[tot].next=head[u];head[u]=tot++;
}
void init(){
tot=0;
memset(head,0xff,sizeof(head));
}
void dfs(int u){
int v;
low[u]=dfn[u]=++dfs_clock;
instack[u]=1;
Stack[top++]=u;
for(int i=head[u];i!=-1;i=edge[i].next){
v=edge[i].to;
if(!dfn[v]){
dfs(v);
if(low[u]>low[v])
low[u]=low[v];
}
else if(instack[v]&&low[u]>dfn[v])
low[u]=dfn[v];
}
if(low[u]==dfn[u]){
++scc_cnt;
for(;;){
v=Stack[--top];
sccno[v]=scc_cnt;
instack[v]=0;
if(v==u) break;
}
}
}
bool solveable(int n){
memset(dfn,0,sizeof(dfn));
dfs_clock=top=scc_cnt=0;
for(int i=0;i<n;++i){
if(!dfn[i]) dfs(i);
}
for(int i=0;i<n;i+=2){
if(sccno[i]==sccno[i+1])
return false;
}
return true;
}
int main()
{
#ifndef ONLINE_JUDGE
freopen("in.cpp","r",stdin);
#endif // ONLINE_JUDGE
int n,m,u,v;
while(scanf("%d%d",&n,&m)==2){
for(int i=0;i<m;++i){
scanf("%d%d",&u,&v);
if(u>v) swap(u,v);
x[2*i]=u;
y[2*i]=v;
}
init();
for(int i=0;i<2*m-1;i++){
for(int j=i+1;j<2*m;++j){
if((j^1)==i) continue;
if((x[i]<x[j]&&y[i]>x[j]&&y[j]>y[i])||(x[j]<x[i]&&y[j]>x[i]&&y[i]>y[j])){
addedge(i,j^1);
addedge(j,i^1);
addedge(i^1,j);
addedge(j^1,i);
}
}
}
if(solveable(2*m)) puts("panda is telling the truth...");
else puts("the evil panda is lying again");
}
return 0;
}