POJ1144.Network——无向图的割点

http://poj.org/problem?id=1144

题目描述:

TLC 电话线路公司正在新建一个电话线路网络。他们将一些地方(这些地方用1 到N 的整数标明,任何2 个地方的标号都不相同)用电话线路连接起来。这些线路是双向的,每条线路连接2 个地方,并且每个地方的电话线路都是连接到一个电话交换机。每个地方都有一个电话交换机。从每个地方都可以达到其他一些地方(如果有线路连接的话),然而这些线路不一定必须是直接连接的,也可以是通过几个电话交换机到达另外一个地方。但是有时会因为电力不足导致某个地方的交换机不能工作。TLC 的官员意识到一旦出现这种情况(在某个地方的交换机不工作,即这个结点与其他结点之间的线路都断开了),除了这个出现故障的地方是不可达外,还可能导致其他一些(本来连通的)地方也不再连通。称这个地方为关节点。

现在TLC 的官员努力想写一个程序来找到关节点的数目。请帮助他们

分析:
求割点的数目

//164K  16MS    C++
#include <cstring>
#include <cstdio>
#include <algorithm>
#include <iostream>
#define rep(i,n) for(int i=0;i<(n);++i)
#define rep1(i,a,b) for(int i=(a);i<(b);++i)
#define For(i,n) for(int i=0;i<=(n);++i)
#define For1(i,a,b) for(int i=(a);i<=(b);++i)
#define clr(a,b) memset(a,b,sizeof(a))
const int MAXN=110;
const int MAXM=10010;
using namespace std;
int low[MAXN],dfn[MAXN];
bool iscut[MAXN];
struct Edge{
    int to,next;
}edge[MAXM];int head[MAXN],tot;
void addedge(int u,int v){
    edge[tot].to=v;
    edge[tot].next=head[u];
    head[u]=tot++;
}
void init(){
    tot=0;
    clr(head,0xff);
}
void dfs(int u,int pre,int dth){
    int v;
    low[u]=dfn[u]=dth;
    int son=0;
    for(int i=head[u];i!=-1;i=edge[i].next){
        v=edge[i].to;
        if(v==pre) continue;
        if(!dfn[v]){
            son++;
            dfs(v,u,dth+1);
            if(low[u]>low[v]) low[u]=low[v];
            if(low[v]>=dfn[u]){
                iscut[u]=true;
            }
        }
        else if(low[u]>dfn[v])
            low[u]=dfn[v];
    }
    if(pre<0&&son==1) iscut[u]=false;
}
void solve(int n){
    clr(dfn,0);
    clr(iscut,false);
    For1(i,1,n){
        if(!dfn[i]) dfs(i,-1,1);
    }
    int ans=0;
    For1(i,1,n){
        if(iscut[i]) ans++;
    }
    printf("%d\n",ans);
}
int main()
{
#ifndef ONLINE_JUDGE
freopen("in.cpp","r",stdin);
#endif // ONLINE_JUDGE
    int N,u,v;
    while(scanf("%d",&N)==1){
        if(N==0) break;
        init();
        int n=-1;
        while(scanf("%d",&u)&&u){
            n=max(n,u);
            while(getchar()!='\n'){
                scanf("%d",&v);n=max(n,v);
                addedge(u,v);
                addedge(v,u);
            }
        }
        solve(n);
    }
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值