MATLAB学习笔记:区间估计

若已经知道了一组数据来自正太分布总体,但是不知道正态分布总体的函数。这时可以利用normfit()命令来完成对参数的点估计和区间估计。

调用格式:

[muhat,sigmahat,muci,sigmaci]=normfit(X,alpla)

此命令以alpha为显著性水平,在数据X下,对参数进行估计(alpha缺省时设定为0.05).

返回值中

muhat是正态分布的均值的点估计值

sigmahat是标准差的点估计

muci是均值的区间估计

sigmaci是标准差的区间估计

X为矩阵时,则对每一列向量进行计算。

>> r=normrnd(10,22,50,1);
>> [mu,sigm,muci,sigmci]=normfit(r)

mu =

   16.2488


sigm =

   27.7757


muci =

    8.3550
   24.1425


sigmci =

   23.2020
   34.6122

>> r=normrnd(10,22,100,1);
>> [mu,sigm,muci,sigmci]=normfit(r)

mu =

    7.8897


sigm =

   23.3575


muci =

    3.2551
   12.5244


sigmci =

   20.5081
   27.1339

>> r=normrnd(10,22,1000,1);
>> [mu,sigm,muci,sigmci]=normfit(r)

mu =

    9.5294


sigm =

   21.5744


muci =

    8.1906
   10.8682


sigmci =

   20.6685
   22.5639

其它分布的参数估计命令:

[muhat,muci]=expfit(X,alpha)

在显著性水平alpha下,指数分布的数据X的均值的点估计及其区间估计。

[lamhat,lamaci]=poissfit(X,alpha)

在显著性水平alpha下,泊松分布的数据X的参数的点估计及其区间估计。

[phat,pci]=weibfit(X,alpha)

在显著性水平alpha下,求Weibull分布的数据X的参数的点估计及其区间估计。j

[ahat,bhat,aci,bci]=unifit(X,alpha)

在显著性水平alpha下,求均匀分布的数据X的参数a和b的点估计及其区间估计。

>> r=exprnd(0.5,100,1);
>> [lamta,lamtaci]=expfit(r)

lamta =

    0.4985


lamtaci =

    0.4136
    0.6127

>> [lamta,lamtaci]=expfit(r,0.01)

lamta =

    0.4985


lamtaci =

    0.3906
    0.6549

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Encarta1993

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值