若已经知道了一组数据来自正太分布总体,但是不知道正态分布总体的函数。这时可以利用normfit()命令来完成对参数的点估计和区间估计。
调用格式:
[muhat,sigmahat,muci,sigmaci]=normfit(X,alpla)
此命令以alpha为显著性水平,在数据X下,对参数进行估计(alpha缺省时设定为0.05).
返回值中
muhat是正态分布的均值的点估计值
sigmahat是标准差的点估计
muci是均值的区间估计
sigmaci是标准差的区间估计
X为矩阵时,则对每一列向量进行计算。
>> r=normrnd(10,22,50,1);
>> [mu,sigm,muci,sigmci]=normfit(r)
mu =
16.2488
sigm =
27.7757
muci =
8.3550
24.1425
sigmci =
23.2020
34.6122
>> r=normrnd(10,22,100,1);
>> [mu,sigm,muci,sigmci]=normfit(r)
mu =
7.8897
sigm =
23.3575
muci =
3.2551
12.5244
sigmci =
20.5081
27.1339
>> r=normrnd(10,22,1000,1);
>> [mu,sigm,muci,sigmci]=normfit(r)
mu =
9.5294
sigm =
21.5744
muci =
8.1906
10.8682
sigmci =
20.6685
22.5639
其它分布的参数估计命令:
[muhat,muci]=expfit(X,alpha)
在显著性水平alpha下,指数分布的数据X的均值的点估计及其区间估计。
[lamhat,lamaci]=poissfit(X,alpha)
在显著性水平alpha下,泊松分布的数据X的参数的点估计及其区间估计。
[phat,pci]=weibfit(X,alpha)
在显著性水平alpha下,求Weibull分布的数据X的参数的点估计及其区间估计。j
[ahat,bhat,aci,bci]=unifit(X,alpha)
在显著性水平alpha下,求均匀分布的数据X的参数a和b的点估计及其区间估计。
>> r=exprnd(0.5,100,1);
>> [lamta,lamtaci]=expfit(r)
lamta =
0.4985
lamtaci =
0.4136
0.6127
>> [lamta,lamtaci]=expfit(r,0.01)
lamta =
0.4985
lamtaci =
0.3906
0.6549