【洛谷】P1364 医院设置

洛谷P1364 医院设置

题目描述
设有一棵二叉树,如图:
在这里插入图片描述
其中,圈中的数字表示结点中居民的人口。圈边上数字表示结点编号,现在要求在某个结点上建立一个医院,使所有居民所走的路程之和为最小,同时约定,相邻接点之间的距离为 11。如上图中,若医院建在1 处,则距离和 = 4 + 12 + 2 × 20 + 2 × 40 = 136 = 4 + 12 + 2 × 20 + 2 × 40 = 136 =4+12+2\times20+2\times40=136=4+12+2×20+2×40=136 =4+12+2×20+2×40=136=4+12+2×20+2×40=136;若医院建在 33 处,则距离和 = 4 × 2 + 13 + 20 + 40 = 81 = 4 × 2 + 13 + 20 + 40 = 81 =4\times2+13+20+40=81=4×2+13+20+40=81 =4×2+13+20+40=81=4×2+13+20+40=81

输入格式
第一行一个整数 n,表示树的结点数。

接下来的 n 行每行描述了一个结点的状况,包含三个整数 w, u, v,其中 w 为居民人口数,u 为左链接(为 0 表示无链接),v 为右链接(为 0 表示无链接)。

输出格式
一个整数,表示最小距离和。

输入输出样例
输入 #1

5						
13 2 3
4 0 0
12 4 5
20 0 0
40 0 0

输出 #1

81

说明/提示
数据规模与约定
对于 100 % 100\% 100%的数据,保证 1 ≤ n ≤ 100 , 0 ≤ u , v ≤ n 1 \leq n \leq 100, 0 \leq u, v \leq n 1n100,0u,vn , 0 ≤ u , v ≤ n 0≤u,v≤n 0u,vn , 1 ≤ w ≤ 1 0 5 1 \leq w \leq 10^5 1w105

可以看到 n ≤ 100 n\leq 100 n100,所以不会超时的,哪怕用弗洛伊德这种也没关系。但要时间复杂度最低的话,这个问题还是第一次遇到。题目的大意就是,在这个树上找一个点,使得所有点到这个点的距离之和最小。如果遍历n个点作为医院,也不是不可以,但是时间复杂度就不是最优了。

我们试着看看相邻的两个点作为医院的时候是否存在着某种联系,其实这就是一种树形dp。假设原来是u作为医院,现在用u的子节点v做医院。对于v为根的子树,这是一个好消息,因为这个子树上所有的点距离都-1了。而对于其他所有的点,这是一个坏消息,因为所有点本来到u就可以了,现在还要再走一步到v,距离还要+1。所以dp方程就出来了:
d p [ v ] = d p [ u ] − s i z e [ v ] + s i z e [ r o o t ] − s i z e [ v ] dp[v]=dp[u]-size[v]+size[root]-size[v] dp[v]=dp[u]size[v]+size[root]size[v]
其中dp[i]表示i作为医院时的总距离,size[i]表示i作为根的子树的大小。那么思路就出来了,预处理一下size数组,然后找到根,从根开始遍历,先算出dp[root],再遍历一次算出dp数组。代码如下:

//
//  main.cpp
//  size[i]表示i为根的子树大小;dp[i]是i作为根的总距离
//  dfs预处理得到size数组
//  dfs2预处理得到dp[root]
//  dfs3计算dp数组
//  Copyright © 2020 ji luyang. All rights reserved.
//
 
#include <iostream>
#include <limits.h>
#include <cstdio>
#include <cmath>
#include <stack>
#include <string>
#include <algorithm>
#include <sstream>
#include <vector>
#include <queue>
#include <cstring>
#include <map>
#include <list>
#include <set>
using namespace std;
int n,root;
struct node{
    int val,id,l,r;
}nodes[110];
int size[110],dp[110];
int res=INT_MAX;
void dfs(int i){
    if(!nodes[i].id){
        size[i]=0;
        return;
    }
    if(nodes[i].l==0&&nodes[i].r==0){
        size[i]=nodes[i].val;
        return ;
    }
    dfs(nodes[i].l);
    dfs(nodes[i].r);
    size[i]=size[nodes[i].l]+size[nodes[i].r]+nodes[i].val;
    return;
}
void dfs2(int i,int h){
    dp[root]+=nodes[i].val*h;
    if(nodes[i].l) dfs2(nodes[i].l,h+1);
    if(nodes[i].r) dfs2(nodes[i].r,h+1);
}
void dfs3(int i){
    if(nodes[i].l){
        dp[nodes[i].l]=dp[i]-2*size[nodes[i].l]+size[root];
        dfs3(nodes[i].l);
    }
    if(nodes[i].r){
        dp[nodes[i].r]=dp[i]-2*size[nodes[i].r]+size[root];
        dfs3(nodes[i].r);
    }
}
int main(){
    cin>>n;
    root=n*(n+1)/2;
    memset(nodes,0,sizeof(nodes));
    memset(dp,0,sizeof(dp));
    memset(size,0,sizeof(size));
    for(int i=1;i<=n;i++){
        scanf("%d %d %d",&nodes[i].val,&nodes[i].l,&nodes[i].r);
        if(nodes[i].l) root-=nodes[i].l;
        if(nodes[i].r) root-=nodes[i].r;
        nodes[i].id=i;
    }
    dfs(root);
    dfs2(root,0);
    dfs3(root);
    for(int i=1;i<=n;i++) res=min(res,dp[i]);
    cout<<res;
    return 0;
}
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值