python中 x[:,0]和x[:,1] 理解和实例解析

x[m,n]是通过numpy库引用数组或矩阵中的某一段数据集的一种写法,

m代表第m维,n代表m维中取第几段特征数据。

通常用法:

x[:,n]或者x[n,:]

x[:,n]表示在全部数组中取第n个数据,直观来说,x[:,n]就是取所有集合的第n个数据, 

举例说明:

x[:,0]

[python]  view plain  copy
  1. import numpy as np  
  2.   
  3. X = np.array([[0,1],[2,3],[4,5],[6,7],[8,9],[10,11],[12,13],[14,15],[16,17],[18,19]])  
  4. print X[:,0]  
  5.    

输出结果是:


x[:,1]

[python]  view plain  copy
  1. import numpy as np  
  2.   
  3. X = np.array([[0,1],[2,3],[4,5],[6,7],[8,9],[10,11],[12,13],[14,15],[16,17],[18,19]])  
  4. print X[:,1]  

输出结果是:

x[n,:]表示在n个数组取全部数据,直观来说,x[n,:]就是取第n集合的所有数据, 

x[1,:]即取第一维中下标为1的元素的所有值,输出结果:


扩展用法

x[:,m:n],即取所有数据集的第m到n-1列数据

例:输出X数组中所有行第1到2列数据

[python]  view plain  copy
  1. X = np.array([[0,1,2],[3,4,5],[6,7,8],[9,10,11],[12,13,14],[15,16,17],[18,19,20]])  
  2. print X[:,1:3]  
输出结果:



评论 20
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值