我们熟知自然数全加和,
推导过程如下,
这个解法并不难,非常容易看懂,但是并不容易真正理解。正负交错和无穷项计算,只需要保持方程的形态,就可以“预知”结果。但是这到底说的是什么意思?比如和
的结果相等,这个数值显然等于二分之一,但是若
为有限项,则它只能等于0或者等于1,那么有限项和无限项的差别到底是什么?或者说,所谓“无限”,到底是什么意思?
现在让我们看一看这个问题的另一种解法,以便于了解“无限”的含义。
考虑数列和,
把它乘以一个不定的数量,先记住这件事,并且在最后要记得把它除掉,
这个数列到底有多长,是不知道的,但是我们知道一件事,就是若它可以有确定值,则它必须有周期性。它有确定值吗?因为不确定,所以它并没有确定值,但是
是我们后来加上的,
已经“吸收”了整个序列的不确定性,那么
就可以有确定值。我们先假定它有确定值,也就是我们要验证得到的
。既然有确定值,也就是有周期性,那么它就可以写成一个模的形式,或者说,用一个“圆”(具有周期)来描绘它。
具体来说,我们做一个由格子构成的直方图,第1列1个格子,长度为单位1,高度为单位1;第2列2个格子,长度为单位1,高度为2;第3列3个格子,长度为单位1,高度为3……现在的问题在于,这个直方图必须无限画下去,因为要实现。那么这个直方图怎么画?
答案是,没法画,我们终究只能截取到某一个。但是,别忘了周期性,也就是说,哪怕这个直方图要任意的“无限”画下去,它最终也有“首尾相接”的时候。而一个直方图如何实现“首尾相接”呢?很简单,就是把它首尾相接。也就是说,把画它的这张纸卷起来(哪怕无限长),让第1列格子和最后1列格子接在一起,就构成了一个螺旋楼梯形状的纸筒(类圆柱)。显然你看到了,这里出现了“升维”操作,我们把二维的平面上的直方图,升维为一个三维空间中的纸筒。之所以这样做,是因为我们就是这样定义维数上升的:二维中的“无限”在三维中是“有限”的。
这样一来,我们就得到了在三维空间中,这个直方图的形态。若把它的侧面都补全,它就是一个圆柱体,若只考虑垂直侧面的底面,它就是一个圆。
我们继续考虑这样一个类圆柱体,看看它的特性。
不难写出它的侧面积为,
这个数是多少很成问题,但还有更成问题的,这个几何体的高是多少?因为最终,高度就是无限的。这样一个侧面积和高度以及体积都无限的圆柱体,我们怎么才能知道它到底是什么样子的?
我们用的是单位长度1为格子的长度,高度从1开始递增的方式构造了这个直方图。我们也可以把高度的单位换成,让
去吸收高度的不确定性。这样的话虽然
和
都是不确定的(而且可以说非常大),但是它们的不确定性都是一维的,于是可以认为,
也就是两个无穷大可以认为是相等的,也就是说它们的不确定程度都是一样的。这时候,我们就可以大胆的认为,这个圆柱体的高,就是它两端数值的差,同时也是底面圆周的周长。
这个圆柱体的高有两种理解方式,