什么叫无限呢?这个问题似乎很难回答,但是若按照字面意思,就是没有限制而已。
显然我们说的是数学,不是别的。
数学上说一个数是无限大的,到底有多大呢?还是按照一样的原则,就是不限制它有多大。
那么不限制到底有多大呢?就是多大都行,也就是多小都行,虽然我们一般都往大了看。
所以一个无限大的数,其实不是说要非常非常的大,而是说,它多大都可以,虽然我们一般都往大了看。
现在问题来了,一个多大都行的数,是个什么数?按照我们的理解,它不就是一个”代数”或者说变量吗?当然也可以这么说,但是这么说并不体现它的最重要的性质。因为说变量说的是这个符号可以任意取值,而无限大的这个数它不是任意取值的问题,而是它就是那个东西本身。
那么这样一个东西如何表述?
首先是它不能被限制。那么对于数来说,什么才是限制?数本身无所谓限制,但计数却有限制,而这个限制就在于计数者或者观察者,观察者自己的计数能力,就是数的限制。比如一个人一秒钟数一个数,从出生开始到100岁整死掉,这些时间所对应的秒数,也就是他能数的最大的数,也就是他计数的限制。
如果超过这个数呢?那就只能“下辈子”再说了,如果有下辈子的话。那么如果真有下辈子呢?从哪开始数数呢?按照我们的习惯,从零开始数数。
也就是说,若要表述这个限制,这个数就是“下辈子的0之前的那一个”,就是这个最大的数。
用方程来写的话,就是,
好了,现在我们对这个最大的数(这里只考虑整数)有了一个最基本的认识。
但是这个认识还不够。虽然我们确实可以描述无限,以至于确实有了一把衡量无限的尺,但是这个尺没有刻度,只能一整个的度量,那么如果还有一个大一点的或者小一点的无限,两个放在一起怎么比较呢?因为这两种情况的n是不可区分的。
正如所有尺都有刻度,我们也得给这个尺标上刻度,至少要标一个刻度吧。
那么在哪标呢?一个刻度,最直接想到的就是中间也就是说算数平均数,
即整体的一半那个地方。
于是,整体的大小为0,它的一半还是0,这个想法显然失败了。
还有别的地方吗?我们也可以考虑它的平方根,也就是几何平均数,这时候整体的大小还是0,
它的平方根还是0,又失败了。
回来观察,
如果不用0,而用n呢?算数平均数是n/2,几何平均数是,但问题在于,这还是代数而不是数。n不定,结果也不定,虽然没有限制,但没有实现对无限的本质上的抽象。
但这个方程稍微处理一下,就可以写成,
算数平均数和几何平均数就可以写成和
。其中
可以认为是-1的一半。可是-1在这里可以有两个意思,一个是相对于0少一个,一个是相对于无限少一个,也就是说,其实0就有两个意思,一个是完全没有,一个是重新开始。所以-1也有两个意思,于是
也继承了这两个意思,从数量上来说,这两个意思是不可区分的。
所以就剩下一个选项,也就是几何平均数。
它是什么意思呢?它就是“几何意义上的无限的一半”。有了这个数值,就可以使用无限标尺了。
但是在使用之前,得先说清楚:这时候的0,说的是重新开始,但是这是计数者的重新开始,
而不是被计数事物的重新开始,被计数事物是不是能重新开始还是说到没到重新开始的程度,
是不知道的,但是在重新开始之前都是可计数的。所以虽然不限制被计数者的数量,但是计数
者本身就是自己的限制是需要被认识到的。还有就是,超越计数者计数能力的部分到底有多大,
计数者可能永远都不知道,也无法做出假设来,唯一知道的就是比极限更大。
不仅如此,是多大,也是不知道的,正如0是多大,-1是多大都是不知道的。
那么一个不知道多大的数,又不用变量来表述,有什么意义呢?
其实就在于假定的“下辈子”,也就是那个0,或者说周期性。虽然不知道有多大,但是只要它
有周期性,就会体现出一些特殊的性质。所以你大可以认为-1和都是为了周期性而存在的。
但是也千万别忘了,这是计数者自己的一厢情愿,被计数者到底有没有周期性,是不知道的。
但是也千万别忘了,为啥计数者会想到周期性,正是因为计数者生活在有周期性的世界里面,
不然他为何要计数?计数本身就是对单位数量的重复,本身就是周期性的实作。
所以你大可以认为,选择周期性就有周期性,选择没有周期性就没有周期性。或者说,选择周期性,就有数量的意义,选择没有周期性,就无所谓数量的意义。而所谓无限,显然是选择周期性的前提下,才有意义的,虽然多大不知道也无需知道,但是周期性是必须要有的,也就是说,数学
上的无限,还是有限制的,那个唯一的限制就是周期性。这也意味着,更广义的无限是存在的,
同时周期性也不必须是它存在的必要条件。
这就是虚数单位的由来。
所以当你见到虚数单位的时候,你就不用考虑那个数有多大了。同时你也知道,它只是目前不知道多大或者并不需要知道多大而已,如果需要的话,它终究是有大小的。
它的平方(-1)描述的是一种上限,但这个上限不意味着被计数者的上限,只意味着计数者自身能力的上限。在这个数之上,完全可能是另一番景象,只是计数者没法知道而已。计数者只能通过不断提高自身计数能力的上限来知道,否则计数者就会回归到自身的周期之中,这是计数的周期性导致的必然宿命。当然,你也可以不计数,那就无所谓上限了。
再扩展一些来说,我们定义一个数x,它的平方是-1,
解方程取算数平方根,
也就是虚数单位i,按照上面给出的解释,它就是无限的平方根,
或者说,无限(-1)和单位1的几何平均数。
这个几何平均数,显然也是无限的,所以我们还可以做一下变换,
也就出现这个结果。我们先前说的是,无限,我们一般都是往大了看。所以-1应该说是一个非常大的数,那么显然它的平方根x也是一个非常大的数。这里又出现了它的倒数,那么它的倒数就是
一个非常小的数。如果x被认为是(常规意义上的)无限大,那么它的倒数就是(常规意义上的)
无穷小了。于是我们就得到了那个“要多小就有多小”,但是不等于0的无穷小。
如果我们要把标尺多分几个刻度呢?比如偶数2m个刻度,那么我们就可以写出,
可能你不熟悉,但是它的倒数,你就可以认为它是m阶无穷小。
这个时候x其实就可以叫做“超虚数单位”了。
但是一般来说用不上,因为就像我们用二进制就可以描述任何数量,
我们只需要二分法就可以表述对无限的各种程度的划分。也就是说,对于无限这种情况,只有一个刻度的尺其实是够用的,因为本来这把尺就可以伸缩,虽然还有更多刻度的尺能给出更丰富的表述形式。就像用一只眼睛可以看到画面,而两只眼睛就能借助视差,从而看出立体来。
东西还是那个东西,观察者变了,能力提升了,东西也显得不一样了:这恐怕就是所谓的“升维”。
但这也给我们带来一个启示,就是看上去一样的,可能根本不同。
比如按照虚数单位的定义,
但是不仅如此,
也就是说,你看到1,它不一定是什么,它可能就是一个单位,也可能是一个周期,也可能是两个周期或者多个周期,也可能是,也就是单位或者周期的倒数。你看到一个事物,它可能是这个样子,也可能只是它本来样子的伪装,甚至它可能有各种样子,每一个都是它真实的样子。
于是,你就可以意识到,整个世界都可以压缩在一个点上;于是你就可以意识到,一个点即可以是整个世界 - 再说就不是数学了。
回到数学,形如,
的方程以(一阶)无穷大加上(一阶)无穷小等于0的形式给出虚数单位的定义。
写出指数形式,
更美观一些。对于“超虚数单位”,可以写成,
不难看出,当n=0的时候,不考虑x是否为0,会出现
也就是,
这不是错误。这个说的是,能构成可计数周期的最小周期长度是2。
这也是二进制是最小可计数的进制的原因。当然此时x等于多少也
已经没有差别了。
这就是我们的计数系统可以提供计数能力的原因:至少有两种不同的东西,
或者状态,才能分辨,才能计数。比如有和无,黑和白,大和小。
但是,正如先前所说的,你也可以选择不计数,是否计数是你的选择。
数学是一种工具,它也带来一个认识世界的视角,但是,正如先前所说的,
是否使用数学是你的选择。
最后,我要说的是,你是自由的,你总有选择。