元宇宙AI在线实验平台助力“技能兴鲁“职业技能大赛人工智能应用赛圆满举办

2024年山东省“技能兴鲁”职业技能大赛——第九届山东省电子信息行业职业技能竞赛人工智能综合技术应用(人工智能训练师)赛项在潍坊工程职业学院成功举办。本次大赛由山东省科学技术协会、山东省工业和信息化厅、山东省人力资源和社会保障厅、山东省总工会、共青团山东省委联合主办,华清远见作为协办单位,为大赛提供了技术支持和平台保障。

图片

图片

元宇宙人工智能实验平台:打造虚实融合的AI实践新生态

本次竞赛的亮点之一是华清远见的元宇宙人工智能实验平台的应用。该平台是华清远见研发中心历时5年精心打造的沉浸式学习平台,集编程、实验、项目于一体,采用搭积木式学习方式构建人工智能学习架构,可视化理解人工智能算法,快速帮助参赛选手构建整体人工智能学习思维。平台涵盖计算机视觉、自然语言处理、大模型等主流人工智能技术方向,支持从算法开发、模型训练到场景落地的全流程实践。

图片

平台特色功能

实验平台设置的人工智能虚拟仿真实验系统包括了多个不同的功能模块和场景:2D可视化学算法、Python代码自动生成学编程、3D场景化构建实践项目等,以其强大的交互式教学优势,帮助学生快速掌握人工智能领域的核心技术。

图片

值得一提的是,该平台配套了“理论+实践+项目”的AI全体系化课程,共有四个学习阶段:

  • 基础理论阶段帮助初学者构建对人工智能的宏观认知,掌握Python编程和PyQt桌面应用开发,并通过线性代数与数据挖掘知识奠定数学基础;

  • 核心课程阶段深入讲解数据预处理、机器学习算法原理与实践、深度学习基础与实践,结合微积分、概率论与统计知识,帮助学生理解底层逻辑;

  • 深度课程阶段剖析计算机视觉、自然语言处理、Transformer、语音识别等领域的核心算法与经典架构,深入讲解卷积神经网络、循环神经网络、注意力机制等原理;

  • 进阶项目实战阶段则通过计算机视觉和AI大模型的综合项目案例,带领学生从原理到代码实现,积累实战经验,提升应用能力。

整套课程覆盖人工智能基础、核心技术应用及行业案例实战,通过阶梯式教学设计与真实企业项目案例,为学习者铺设了一条清晰的学习路径。

图片

平台应用广泛,赋能高校教学智能化升级

目前,华清远见元宇宙人工智能在线实验平台已广泛应用于集团教学培训、高校师资培训、高校实习实训、高校实验室建设、创新竞赛等众多领域。平台利用虚拟仿真技术,有效解决了人工智能教学中普遍面临的算法理论抽象、编程难度大、项目场景应用难三大难题,为高校教学智能化升级和人才培养提供了全方位支持。不仅助力高校教师提升教学水平,还为学生提供了从基础学习到项目实战的沉浸式学习体验,推动人工智能教育的普及与深化,为行业输送更多高素质人才。未来,华清远见将继续通过技术创新,推动人工智能教育的普及与发展。

图片

### 关于2024年江西省职业院校技能大赛人工智能技术与应用赛项(高职组) 目前提供的引用资料并未直接提及2024年江西省职业院校技能大赛中“人工智能技术与应用”赛项的具体竞赛规则或评分标准。然而,可以通过分析其他相似赛项的内容来推测可能涉及的关键领域。 #### 可能的比赛内容 基于以往的职业技能大赛趋势,“人工智能技术与应用”赛项通常会涵盖以下几个方面: 1. **数据处理与算法实现** 涉及机器学习模型训练、深度学习框架的应用以及数据分析能力的考察。选手需具备Python编程基础,并熟练掌握TensorFlow、PyTorch等主流AI工具库[^3]。 2. **应用场景开发** 赛题可能会围绕实际场景展开,例如图像识别、自然语言处理或者语音合成等领域中的具体任务完成情况作为考核重点之一[^1]。 3. **系统优化与性能提升** 类似于云计算应用赛项提到的任务——容器云平台调优或排错工作,在人工智能方向上也可能加入对于神经网络结构改进、超参数调整等方面的要求以提高预测精度和运行效率。 #### 假设性的成绩评定方式 虽然未明确给出该赛项的成绩计算方法,但一般情况下可以参照如下几个维度来进行打分: - 实现功能完整性 (占比约40%-50%): 是否按照题目要求完成了指定的功能模块. - 性能指标达成度 (占比约20%-30%) : 如分类准确率, 推理速度等关键数值表现如何. - 创新性和实用性考量 (剩余比例分配) : 解决方案是否有独特之处? 对现实问题解决价值几何? 以下是示例代码片段用于展示简单的Keras模型构建过程: ```python from tensorflow.keras.models import Sequential from tensorflow.keras.layers import Dense model = Sequential() model.add(Dense(units=64, activation='relu', input_dim=100)) model.add(Dense(units=1, activation='sigmoid')) model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy']) ``` 此段脚本展示了如何定义并编译一个基本二元分类器,这可能是比赛中需要掌握的基础知识点的一部分.
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值