HuggingFace 模型下载以及运行测试

huggingface的模型deepseek-llm-7b-chat本地部署

本地地址

使用代码

AutoTokenizer.from_pretrained(model_name)

模型下载地址:下面bai是你的电脑用户名称
C:\Users\bai\.cache\huggingface\hub\

单次运行

import torch
from transformers import AutoTokenizer, AutoModelForCausalLM, GenerationConfig

model_name = "deepseek-ai/deepseek-llm-7b-chat"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
model.generation_config = GenerationConfig.from_pretrained(model_name)
model.generation_config.pad_token_id = model.generation_config.eos_token_id

messages = [
    {"role": "user", "content": "Who are you?"}
]
input_tensor = tokenizer.apply_chat_template(messages, add_generation_prompt=True, return_tensors="pt")
outputs = model.generate(input_tensor.to(model.device), max_new_tokens=100)

result = tokenizer.decode(outputs[0][input_tensor.shape[1]:], skip_special_tokens=True)
print(result)

保留聊天窗口,使用pytorch,deepseek做一个带有历史的聊天

import torch
from transformers import AutoTokenizer, AutoModelForCausalLM, GenerationConfig

# 模型和tokenizer的加载
model_name = "deepseek-ai/deepseek-llm-7b-chat"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
model.generation_config = GenerationConfig.from_pretrained(model_name)
model.generation_config.pad_token_id = model.generation_config.eos_token_id

# 初始化对话历史
messages = []

# 循环,直到用户决定停止对话
while True:
    # 获取用户输入
    user_input = input("You: ")
    if user_input.lower() == "quit":
        break

    # 更新对话历史
    messages.append({"role": "user", "content": user_input})

    # 将对话历史转换为模型的输入格式
    input_tensor = tokenizer.apply_chat_template(messages, add_generation_prompt=True, return_tensors="pt")

    # 生成回答
    outputs = model.generate(input_tensor.to(model.device), max_new_tokens=100)

    # 解码生成的回答
    result = tokenizer.decode(outputs[0][input_tensor.shape[1]:], skip_special_tokens=True)
    print("AI:", result)

    # 将AI的回答也加入到对话历史中
    messages.append({"role": "system", "content": result})
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

小~小

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值