本地下载huggingface模型并在服务器上使用流程

本地下载huggingface模型的办法

方法一:使用huggingface_hub库下载

先安装huggingface_hub库:

pip install huggingface_hub

之后运行:

from huggingface_hub import snapshot_download

# 指定模型名称和下载路径
model_name = "bert-base-uncased"
save_path = "./my_local_model"

# 下载模型
snapshot_download(repo_id=model_name, cache_dir=save_path)

但是注意,因为网络问题需要科学上网才能下载下来.

但是我们可以使用镜像网站,不需要科学上网就能直接下载。

import os

os.environ['HF_ENDPOINT'] = 'https://hf-mirror.com'   # 这个镜像网站可能也可以换掉

from huggingface_hub import snapshot_download

snapshot_download(repo_id="google-bert/bert-base-uncased",
                  local_dir_use_symlinks=False,
                  local_dir="./google-bert/bert-base-uncased")

离线加载模型

如果你已经下载好了模型,并且希望之后在离线环境中使用这些模型,你可以通过local_files_only=True参数来确保模型从本地加载,而不是重新联网下载。

model = AutoModel.from_pretrained(model_save_path, local_files_only=True)
tokenizer = AutoTokenizer.from_pretrained(model_save_path, local_files_only=True)

方法二:使用transformers库下载(需要安装pytorch库)

  • 首先需要安装好pytorch库(AutoModelForSequenceClassification这个类是基于PyTorch的一个库)
  • 其次需要安装好Hugging Face 的 transformers 库以及 huggingface_hub 库。这两个库可以通过 pip 安装:
pip install transformers 
pip install huggingface_hub

如果你使用的是Windows和pip,没有合适的GPU,可以安装CPU版本的PyTorch,可以使用以下命令:

pip install torch torchvision torchaudio
pip install transformers
from transformers import AutoTokenizer, AutoModelForSequenceClassification

# 下载模型和分词器
model_name = "bert-base-uncased"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForSequenceClassification.from_pretrained(model_name)

# 保存模型到本地
model.save_pretrained("./models/bert-base-uncased")
tokenizer
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值