EM是什么
指期望最大化算法(Expectation Maximization Algorithm),是一种迭代算法,用于含有隐变量(latent variable)的概率参数模型的最大似然估计或极大后验概率估计,也就是用于函有隐变量概率参数模型的参数估计。在介绍EM算法之前,先补充如下几点基础知识。
正定矩阵
设M是
n
阶实系数对称矩阵,若对任何非零向量
正定矩阵在相合变换下可化为标准型, 即单位矩阵。所有特征值大于零的对称矩阵(或厄米矩阵)也是正定矩阵。对称阵A为正定的充要条件如下:
- A的特征值全为正。
- A的各阶主子式都为正。
任意阵A为正定的充要条件是:A合同于单位阵。为什么正定性与矩阵的特征值有关呢,下面给出一些证明。
对任给一个对称阵 M ,对其进行特征分解,有
对 ∀x 有
而
Qx
是对
x
的一个线性变换,
也即是,分析对称阵M的正定性,等价于分析其特征值对角阵 Λ 的正定性。(结论1)
为了叙述方便,记
Λ=diag(λ1,...λi,...,λn)
。容易知道,特征值对角阵是正定阵必须要求所有特征值为正,半正定则要求所有特征值非负。关键在于正定性定义中
x
具有任意性。假若存在某个特征值
上述证明来源于知乎(https://www.zhihu.com/question/22098422/answer/113320609)。
Jensen 不等式
未完待续。。。
参考
http://blog.csdn.net/u014203453/article/details/78161964
http://blog.csdn.net/flyfish5/article/details/49978239