EM算法

EM是什么

指期望最大化算法(Expectation Maximization Algorithm),是一种迭代算法,用于含有隐变量(latent variable)的概率参数模型的最大似然估计或极大后验概率估计,也就是用于函有隐变量概率参数模型的参数估计。在介绍EM算法之前,先补充如下几点基础知识。

正定矩阵

设M是 n 阶实系数对称矩阵,若对任何非零向量 X=(x1,...xn) 都有 XTMX>0 ,则称M正定(Positive Definite)。

正定矩阵在相合变换下可化为标准型, 即单位矩阵。所有特征值大于零的对称矩阵(或厄米矩阵)也是正定矩阵。对称阵A为正定的充要条件如下:

  1. A的特征值全为正。
  2. A的各阶主子式都为正。

任意阵A为正定的充要条件是:A合同于单位阵。为什么正定性与矩阵的特征值有关呢,下面给出一些证明。

对任给一个对称阵 M ,对其进行特征分解,有

M=QTΛQ

x

xTMx=(Qx)TΛQx

Qx 是对 x 的一个线性变换,x是任意的,也就是说 Qx 也是任意的。若令 y=Qx ,则原定义等价于分析是否存在任意的 y ,使得下式恒成立。

yTΛy0

也即是,分析对称阵M的正定性,等价于分析其特征值对角阵 Λ 的正定性。(结论1)

为了叙述方便,记 Λ=diag(λ1,...λi,...,λn) 。容易知道,特征值对角阵是正定阵必须要求所有特征值为正,半正定则要求所有特征值非负。关键在于正定性定义中 x 具有任意性。假若存在某个特征值λi<0,显然可以构造 x=(0,...,1,...,0) (第i位是1),则 xTΛx=λi<0 ,则违背了正定性定义。由反证法容易知道正定必须所有特征值为正,也就是特征值均为正(结论2)。同理可以证出,半正定要求特征值必须非负。

上述证明来源于知乎(https://www.zhihu.com/question/22098422/answer/113320609)。

Jensen 不等式

未完待续。。。

参考

http://blog.csdn.net/u014203453/article/details/78161964
http://blog.csdn.net/flyfish5/article/details/49978239

添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值