Codeforces Round #310 (Div. 1)A B

A - Case of Matryoshkas 题意:两种操作,1:把单独的一个大娃娃套在一串或者一个娃娃外面。2:把单独的一个娃娃在一串娃娃的最外层取下来。每次操作1s,问最短时间内组出一个1~n的套娃(每个sz的套娃都只有1个)

hash下地址然后从1~n扫一遍即可

const int N = 100010;

int pos[N], sz[N];
int n, k;

int main()
{
    while( ~scanf("%d%d", &n, &k) ) {
        int ans = 0, x, m, cur;
        for( int i = 1; i <= k; ++i ) {
            scanf("%d", &sz[i]);
            for( int j = 1; j <= sz[i]; ++j ) {
                scanf("%d", &x);
                if( x == 1 )
                    cur = i;
                pos[x] = i;
            }
        }
        for( int i = 2; i <= n; ++i ) {
            if( pos[i] == cur )
                continue;
            else {
                cur = -1;
                if( sz[pos[i]] > 1 )
                    ans += 2;
                else
                    ans++;
                sz[pos[i]]--;
            }
        }
        printf("%d\n", ans);
    }
    return 0;
}

B - Case of Fugitive 给出一维坐标上n个区间m条线段,问能否通过m条线段中n-1条线段连接n个区间,一条线段能连接两个区间的,当且只当这条线段比两个区间的最短距离大,且不超过这两个区间的两端。

易得满足两个区间能相连的范围是【li+1-ri, ri+1-li]】。把每条长度看成一条点,题目就转换为m个点要落在以前面的范围为区间上面,保证每个区间上都有一个点且每个点不重用就行了。然后就点和范围区间排序,按照满足当前点的区间的最右端最左的贪心策略就行了。

const int N = 200010;

int n, m;
struct node{
    ll l, r;
    int id;
    bool operator < ( const node &rhs ) const {
        if( r > rhs.r )
            return 1;
        else if( r == rhs.r )
            if( l > rhs.l )
                return 1;
        return 0;
    }
}a[N];

struct pp{
    ll x;
    int pos;
}p[N];

int ans[N];
priority_queue <node> q;

bool cmp( const pp &e, const pp &r )
{
    return e.x < r.x;
}

bool cmp1( const node &z, const node &x )
{
    return z.l < x.l;
}

int main()
{
    while( ~scanf("%d%d", &n, &m) ) {
        while( !q.empty() ) q.pop();
        ll l, r, lll, rrr;
        for( int i = 1; i <= n; ++i ) {
            ans[i] = -1;
            scanf("%lld%lld", &l, &r);
            if( i >= 2 ) {
                a[i].l = l - rrr;
                a[i].r = r - lll;
                a[i].id = i;
            }
            lll = l;
            rrr = r;
            ///q.push(a[i]);
        }
        for( int i = 1; i <= m; ++i ) {
            scanf("%lld", &p[i].x);
            p[i].pos = i;
        }
        if( m < n-1 ) {
            puts("No");
            continue;
        }
        sort( p+1, p+m+1, cmp );
        sort( a+1, a+1+n, cmp1 );
        /*
        while( !q.empty() ) {
            node c = q.top();
            q.pop();
            printf("id: %d l: %lld r: %lld\n", c.id, c.l, c.r);
        }
        for( int i = 1; i <= m; ++i ) {
            printf("posi: %d x: %lld\n", p[i].pos, p[i].x);
        }
        for( int i = 1; i <= n; ++i ) {
            printf("id: %d l: %lld r: %lld\n", a[i].id, a[i].l, a[i].r);
        }
        */
        int cur = 2;
        for( int i = 1; i <= m; ++i ) {
            while( cur <= n && a[cur].l <= p[i].x ) {
                q.push( a[cur] );
                cur++;
            }
            while( !q.empty() ) {
                node c = q.top();
                q.pop();
                if( p[i].x <= c.r ) {
                    ans[c.id] = p[i].pos;
                    break;
                }
            }
        }
        bool OK = 1;
        for( int i = 2; i <= n; ++i ){
            ///printf("i: %d ansi: %d\n", i, ans[i]);
            if( ans[i] == -1 ) {
                OK = 0;
                break;
            }
        }
        if( !OK )
            puts("No");
        else {
            puts("Yes");
            for( int i = 2; i <= n; ++i )
                printf("%d ", ans[i]);
            puts("");
        }
    }
    return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值