【leetcode】#数组【Python】63. Unique Paths II 不同路径 II

链接:

https://leetcode-cn.com/problems/unique-paths-ii/

题目:

一个机器人位于一个 m x n 网格的左上角 (起始点在下图中标记为“Start” )。

机器人每次只能向下或者向右移动一步。机器人试图达到网格的右下角(在下图中标记为“Finish”)。

现在考虑网格中有障碍物。那么从左上角到右下角将会有多少条不同的路径?

网格中的障碍物和空位置分别用 1 和 0 来表示。

说明:m 和 n 的值均不超过 100。

示例 1:

输入: [ [0,0,0], [0,1,0], [0,0,0] ] 输出: 2 解释: 3x3 网格的正中间有一个障碍物。
从左上角到右下角一共有 2 条不同的路径:

  1. 向右 -> 向右 -> 向下 -> 向下
  2. 向下 -> 向下 -> 向右 -> 向右

我的解法:基本思路是在原obstacleGrid基础上,一行一行遍历。
给所有位置乘了个1 - obstacleGrid[i][j]。如果原来位置是1(拦住了),就乘个0,说明没有路

class Solution(object):
    def uniquePathsWithObstacles(self, obstacleGrid):
        for i in range(len(obstacleGrid)):
            for j in range(len(obstacleGrid[0])):
            	# 第一个数
                if i==0 and j==0:
                    obstacleGrid[i][j] = 1 - obstacleGrid[i][j]
                # 第一行
                elif i == 0:
                    obstacleGrid[i][j] = obstacleGrid[i][j-1] * (1 - obstacleGrid[i][j])
                #第一列
                elif j == 0:
                    obstacleGrid[i][j] = obstacleGrid[i-1][j] * (1 - obstacleGrid[i][j])
                #其他所有情况
                else:
                    obstacleGrid[i][j] = (obstacleGrid[i][j-1]+obstacleGrid[i-1][j])*(1 - obstacleGrid[i][j])
        return obstacleGrid[-1][-1]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值