链接:
题目:
一个机器人位于一个 m x n 网格的左上角 (起始点在下图中标记为“Start” )。
机器人每次只能向下或者向右移动一步。机器人试图达到网格的右下角(在下图中标记为“Finish”)。
现在考虑网格中有障碍物。那么从左上角到右下角将会有多少条不同的路径?
网格中的障碍物和空位置分别用 1 和 0 来表示。
说明:m 和 n 的值均不超过 100。
示例 1:
输入: [ [0,0,0], [0,1,0], [0,0,0] ] 输出: 2 解释: 3x3 网格的正中间有一个障碍物。
从左上角到右下角一共有 2 条不同的路径:
- 向右 -> 向右 -> 向下 -> 向下
- 向下 -> 向下 -> 向右 -> 向右
我的解法:基本思路是在原obstacleGrid基础上,一行一行遍历。
给所有位置乘了个1 - obstacleGrid[i][j]。如果原来位置是1(拦住了),就乘个0,说明没有路
class Solution(object):
def uniquePathsWithObstacles(self, obstacleGrid):
for i in range(len(obstacleGrid)):
for j in range(len(obstacleGrid[0])):
# 第一个数
if i==0 and j==0:
obstacleGrid[i][j] = 1 - obstacleGrid[i][j]
# 第一行
elif i == 0:
obstacleGrid[i][j] = obstacleGrid[i][j-1] * (1 - obstacleGrid[i][j])
#第一列
elif j == 0:
obstacleGrid[i][j] = obstacleGrid[i-1][j] * (1 - obstacleGrid[i][j])
#其他所有情况
else:
obstacleGrid[i][j] = (obstacleGrid[i][j-1]+obstacleGrid[i-1][j])*(1 - obstacleGrid[i][j])
return obstacleGrid[-1][-1]