爬虫并行化

##map使用
map函数包含了序列操作,参数传递和结果保存的的一系列操作
###导入

from multiprocessing.dummy import Pool
pool = Pool(4)  #表示4线程
results = pool.map(爬取函数,网址列表)

附上简单并行爬虫的例子

__author__ = 'ding'
'''
多线程使用
'''
from multiprocessing.dummy import Pool as ThreadPool
import requests
import time


def getsource(url):
    html = requests.get(url)


urls = []

for i in range(1, 21):
    newpage = 'http://tieba.baidu.com/p/3522395718?pn=' + str(i)
    urls.append(newpage)

time1 = time.time()
for i in urls:
    print(i)
    getsource(i)

time2 = time.time()
print('单线程耗时:' + str(time2 - time1))

pool = ThreadPool(4)
time3 = time.time()
results = pool.map(getsource, urls)
pool.close()
pool.join()
time4 = time.time()
print("并行耗时:" + str(time4 - time3))

out put

单线程耗时:109.83350014686584
并行耗时:13.332000017166138

网络较慢所以耗时较长,但相比较而言并行效率比单线程要高上很多

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值