Educational Codeforces Round 2 E. Lomsat gelral(启发式合并)

185 篇文章 0 订阅
3 篇文章 0 订阅

You are given a rooted tree with root in vertex 1. Each vertex is coloured in some colour.

Let's call colour c dominating in the subtree of vertex v if there are no other colours that appear in the subtree of vertex v more times than colour c. So it's possible that two or more colours will be dominating in the subtree of some vertex.

The subtree of vertex v is the vertex v and all other vertices that contains vertex v in each path to the root.

For each vertex v find the sum of all dominating colours in the subtree of vertex v.

Input

The first line contains integer n (1 ≤ n ≤ 105) — the number of vertices in the tree.

The second line contains n integers ci (1 ≤ ci ≤ n), ci — the colour of the i-th vertex.

Each of the next n - 1 lines contains two integers xj, yj (1 ≤ xj, yj ≤ n) — the edge of the tree. The first vertex is the root of the tree.

Output

Print n integers — the sums of dominating colours for each vertex.

Examples
input
4
1 2 3 4
1 2
2 3
2 4
output
10 9 3 4
input
15
1 2 3 1 2 3 3 1 1 3 2 2 1 2 3
1 2
1 3
1 4
1 14
1 15
2 5
2 6
2 7
3 8
3 9
3 10
4 11
4 12
4 13
output
6 5 4 3 2 3 3 1 1 3 2 2 1 2 3


分析:题意很简单,我理解的启发式合并,就是现在要把n堆元素合并成一个,每次可以合并两个,费用为合并的这两堆元素中任意一堆的大小,那么我们每次合并都可以贪心的选择将小的并入大的中,然后不难证明这样合并费用最多是n*logn*单位合并费用(最坏情况貌似是像完全二叉树那样合并?最好的情况应该是每次加一个单位进来,n*合并费用),这道题的话就是n*logn^2.

#include<iostream>
#include<string>
#include<algorithm>
#include<cstdlib>
#include<cstdio>
#include<set>
#include<map>
#include<vector>
#include<cstring>
#include<stack>
#include<queue>
#define INF 0x3f3f3f3f
#define eps 1e-9
#define N 100005
#define MOD 998244353
using namespace std;
typedef long long ll;
int n,u,v,c[N],Max1[N],sum[N];
ll Max2[N],ans[N];
vector<int> G[N];
map<int,int> f[N];
void dfs(int u,int fa)
{
    f[u][c[u]]++;
    Max1[u] = 1;
    Max2[u] = c[u];
    for(int v : G[u])
     if(v != fa)
     {
        dfs(v,u);
        if(f[u].size() < f[v].size())
        {
            swap(f[u],f[v]);
            swap(Max1[u],Max1[v]);
            swap(Max2[u],Max2[v]);
        }
        for(auto it = f[v].begin();it != f[v].end();it++)
        {
            int who = it->first;
            f[u][who] += it->second;
            if(Max1[u] == f[u][who]) Max2[u] += who;
            if(Max1[u] < f[u][who])
            {
                Max1[u] = f[u][who];
                Max2[u] = who;
            }
        }
        f[v].clear();
    }
    ans[u] = Max2[u];
}
int main()
{
    scanf("%d",&n);
    for(int i = 1;i <= n;i++) scanf("%d",&c[i]);
    for(int i = 1;i < n;i++)
    {
        scanf("%d%d",&u,&v);
        G[u].push_back(v);
        G[v].push_back(u);
    }
    dfs(1,-1);
    for(int i = 1;i <= n;i++) printf("%I64d ",ans[i]);
}



评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值