A couple of friends, Axel and Marston are travelling across the country of Bitland. There are n towns in Bitland, with some pairs of towns connected by one-directional roads. Each road in Bitland is either a pedestrian road or a bike road. There can be multiple roads between any pair of towns, and may even be a road from a town to itself. However, no pair of roads shares the starting and the destination towns along with their types simultaneously.
The friends are now located in the town 1 and are planning the travel route. Axel enjoys walking, while Marston prefers biking. In order to choose a route diverse and equally interesting for both friends, they have agreed upon the following procedure for choosing the road types during the travel:
- The route starts with a pedestrian route.
- Suppose that a beginning of the route is written in a string s of letters P (pedestrain road) and B (biking road). Then, the string is appended to s, where stands for the string s with each character changed to opposite (that is, all pedestrian roads changed to bike roads, and vice versa).
In the first few steps the route will look as follows: P, PB, PBBP, PBBPBPPB, PBBPBPPBBPPBPBBP, and so on.
After that the friends start travelling from the town 1 via Bitlandian roads, choosing the next road according to the next character of their route type each time. If it is impossible to choose the next road, the friends terminate their travel and fly home instead.
Help the friends to find the longest possible route that can be travelled along roads of Bitland according to the road types choosing procedure described above. If there is such a route with more than 1018 roads in it, print -1 instead.
The first line contains two integers n and m (1 ≤ n ≤ 500, 0 ≤ m ≤ 2n2) — the number of towns and roads in Bitland respectively.
Next m lines describe the roads. i-th of these lines contains three integers vi, ui and ti (1 ≤ vi, ui ≤ n, 0 ≤ ti ≤ 1), where vi and uidenote start and destination towns indices of the i-th road, and ti decribes the type of i-th road (0 for a pedestrian road, 1 for a bike road). It is guaranteed that for each pair of distinct indices i, j such that 1 ≤ i, j ≤ m, either vi ≠ vj, or ui ≠ uj, or ti ≠ tj holds.
If it is possible to find a route with length strictly greater than 1018, print -1. Otherwise, print the maximum length of a suitable path.
2 2 1 2 0 2 2 1
3
2 3 1 2 0 2 2 1 2 2 0
-1
In the first sample we can obtain a route of length 3 by travelling along the road 1 from town 1 to town 2, and then following the road 2 twice from town 2 to itself.
In the second sample we can obtain an arbitrarily long route by travelling the road 1 first, and then choosing road 2 or 3 depending on the necessary type.
题意:有向图,每条边有0,1两种权值,现在让你找一条特殊的路径(满足序列f[1] = 0,f[i] = f[i-1] + ~f[i-1],01101001....这样的序列),问这条路径最长能有多长。
分析:因为路径序列的特殊性,我们可以考虑在图上倍增,dp[i][j]表示第一步为i走了2^j步后图的连通矩阵,然后有 dp[i][j] = dp[i][j-1] * dp[i^1][j-1],预处理出这个矩阵后我们就可以按照树上倍增求lca那样先走大步后走小步求出最长能走多远。
#include <bits/stdc++.h>
#define MOD 1000000007
#define N 505
using namespace std;
int n,m,u,v,ti;
long long ans;
bitset<N> vis,vis2;
struct Matrix
{
bitset<N> val[N];
Matrix()
{
for(int i = 1;i <= n;i++) val[i].reset();
}
friend Matrix operator *(const Matrix a,const Matrix b)
{
Matrix c;
for(int i = 1;i <= n;i++)
for(int j = 1;j <= n;j++)
if(a.val[i][j]) c.val[i] |= b.val[j];
return c;
}
}dp[2][64];
int main()
{
scanf("%d%d",&n,&m);
for(int i = 1;i <= m;i++)
{
scanf("%d%d%d",&u,&v,&ti);
dp[ti][0].val[u].set(v);
}
for(int i = 1;i <= 62;i++)
{
dp[0][i] = dp[0][i-1] * dp[1][i-1];
dp[1][i] = dp[1][i-1] * dp[0][i-1];
}
vis.reset();
vis.set(1);
int now = 0;
for(int t = 62;t >= 0;t--)
{
vis2.reset();
for(int i = 1;i <= n;i++)
if(vis[i]) vis2 |= dp[now][t].val[i];
if(vis2.count())
{
ans += 1ll<<t;
now ^= 1;
vis = vis2;
}
}
if(ans >= 1e18) cout<<-1<<endl;
else cout<<ans<<endl;
}