占坑先,想起来了会填的~
前言:关于xgboost,其作者有个介绍性的ppt,写的很好!就算不是为了看xgboost,也可以看看前面部分,作者对监督学习的解释讲得很好!~ xgboost原理介绍 防网页挂掉专用下载链接xgboost原理
xgboost属于boosting算法,xgboost模型是ensemble trees(这个对于GBDT、Random Forests等都是),损失函数是MSE平方损失函数,策略是结构风险化最小(前面在xgboost调参里面也将到了xgboost是属于有正则化项的),算法是前向分步算法。
xgboost一个很神奇的点在于用的是MSE,所以拟合的是上一次拟合的残差(有一个现象是xgboost通常用很少的树深度就能达到好的精度,而random forests则不然,因为random forests是随机建树,树之间没有依赖关系,这种可以完全并行化的集成方法一般都会有降低variance,而非提高bias的感觉。)
先这么多,之后再补充吧