机器学习
yangpc_615
从业AI领域,主要方向在深度学习大规模模型训练优化。大embedding推荐模型训练优化。
展开
-
OpenCV编程实现LeCun论文(Gradient-Based Learning Applied to Document Recognition)中的CNN
OpenCV编程实现LeCun论文(Gradient-Based Learning Applied to Document Recognition)中的CNN之前由于工程原因要实现LeCun中的CNN算法,在实现的过程中遇到了一些麻烦,但是对这些问题网上都没有清楚的解答。同时各个博客上所说都是大同小异,所以想写一篇博客对这些问题做一个较清楚全面的解释。另外这些问题都是我在实际编程实现该算法中遇原创 2017-01-18 10:13:37 · 2875 阅读 · 0 评论 -
Monte Carlo(蒙特卡罗)
Monte Carlo(蒙特卡罗)Monte Carlo 是一种基于计算机的求解方法,利用计算机在input domain上产生一组随机数,通过这一组随机数计算出一组结果。通过这样的一个反复过程最终大致得到待求解值。具体过程:Define a domain of possible inputsGenerate inputs randomly from a probability原创 2017-12-26 11:10:12 · 374 阅读 · 0 评论 -
TensorFlow学习--实现原理
TensorFlow学习--实现原理单机和分布式版 TensorFlow中的client通过Session的接口与master及多个worker相连。每一个worker可以和多个硬件设备相连如CPU&GPU,并负责管理这些硬件。而master则负责管理所有worker按流程执行计算图。其中分布式版本中的client、master、及worker可以分布在不同的机器的不同进程中。...原创 2018-03-07 08:54:20 · 703 阅读 · 0 评论 -
交叉熵和均方差损失函数的比较
交叉熵和均方差损失函数的比较交叉熵 熵是香农信息量()(底数是2)的期望,即为衡量一个样本所需要的平均编码长度,表示为: 其中的pi表示样本的分布,现在如果用一个估计的分布qi来表示求真实分布pi的平均编码长度,得到: 即为交叉熵。举例说明,现有(A,B,C,D)四个字母,其中A出现的概率为1/2,B出现的概率为1/2,而C和D出现的概率均为0,即P:(1...原创 2018-03-10 22:09:11 · 10354 阅读 · 2 评论