Otsu‘s Thresholding的工作原理

本文介绍了Otsu's Thresholding算法的工作原理,它用于在双峰图像中寻找最佳全局阈值,以最小化加权类内方差。通过Python的OpenCV库,演示了如何应用此算法对图像进行二值化处理,并展示了相应的代码示例。最终,对比了手动实现和OpenCV内置函数的阈值结果。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Otsu’s Thresholding的工作原理

在双峰图像(像素的直方图只包含两个峰值),一个好的阈值将在这两个值的中间。Otsu算法就是从图像的像素直方图中确定了一个最佳的全局阈值 t t t,可以最小化weighted within-class variance加权类内方差。

σ w 2 ( t ) = q 1 ( t ) σ 1 2 ( t ) + q 2 ( t ) σ 2 2 ( t ) \sigma_w^2(t) = q_1(t)\sigma_1^2(t)+q_2(t)\sigma_2^2(t) σw2(t)=q1(t)σ12(t)+q2(t)σ22(t)
权重:
q 1 ( t ) = ∑ i = 1 t P ( i ) & q 2 ( t ) = ∑ i = t + 1 I P ( i ) q_1(t) = \sum_{i=1}^{t} P(i) \quad \& \quad q_2(t) = \sum_{i=t+1}^{I} P(i) q1(t)=i=1tP(i)&q2(t)=i=t+1IP(i)
均值:
μ 1 ( t ) = ∑ i = 1 t i P ( i ) q 1 ( t ) & μ 2 ( t ) = ∑ i = t + 1 I i P ( i ) q 2 ( t ) \mu_1(t) = \sum_{i=1}^{t} \frac{iP(i)}{q_1(t)} \quad \& \quad \mu_2(t) = \sum_{i= t+1}^{I} \frac{iP(i)}{q_2(t)} μ1(t)=i=1tq1(t)iP(i)&μ2(t)=i=t+1Iq2(t)iP(i)
方差:
σ 1 2 ( t ) = ∑ i = 1 t [ i − μ 1 ( t ) ] 2 P ( i ) q 1 ( t ) & σ 2 2 ( t ) = ∑ i = t + 1 I [ i − μ 2 ( t ) ] 2 P ( i ) q 2 ( t ) \sigma_1^2(t) = \sum_{i=1}^{t} [i-\mu_1(t)]^2 \frac{P(i)}{q_1(t)} \quad \& \quad \sigma_2^2(t) = \sum_{i=t+1}^{I} [i-\mu_2(t)]^2 \frac{P(i)}{q_2(t)} σ12(t)=i=1t[iμ1(t)]2q1(t)P(i)&σ22(t)=i=t+1I[iμ2(t)]2q2(t)P(i)

import cv2 as cv
import numpy as np
import seaborn as sns
import matplotlib.pyplot as plt
img = cv.imread('./images/kakaka.jpg')
img = cv.cvtColor(img, cv.COLOR_BGR2RGB)
img_gray = cv.cvtColor(img, cv.COLOR_RGB2GRAY)
#img_blur = cv.GaussianBlur(img_gray, (5, 5), 0)

在这里插入图片描述

Numpy Otsu’s thresholding
hist_cv = cv.calcHist([img_gray],[0],None,[256],[0,256]) # (256,1)
hist_np = np.bincount(img_gray.ravel(), minlength=256)   # (256,)
hist_norm = hist_np/hist_np.sum()
Q = hist_norm.cumsum()
bins = np.arange(256)
fn_min = np.inf
thresh = -1

for i in range(1, 256):
    p1, p2 = np.hsplit(hist_norm, [i])
    q1, q2 = Q[i], 1.0 - Q[i]    # Q[255] = 1.0
    if q1 < 1.e-6 or q2 < 1.e-6:
        continue
    b1, b2 = np.hsplit(bins, [i])
    # means and variances
    m1, m2 = np.sum(p1*b1)/q1, np.sum(p2*b2)/q2
    v1, v2 = np.sum(((b1 - m1)**2)*p1)/q1, np.sum(((b2 - m2)**2)*p2)/q2
    # weighted within-class variances
    fn = v1*q1 + v2*q2
    if fn < fn_min:
        fn_min = fn
        thresh = i
print("threshold t : %d"%thresh)
threshold t : 115

在这里插入图片描述

mask = np.zeros_like(img_gray)
mask[np.where(img_gray >= 115)] = 1
plt.imshow(img*mask.reshape(245, 250, 1))

在这里插入图片描述

OpenCV otsu’s thresholding
ret, otsu = cv.threshold(img_gray, 0, 255, cv.THRESH_BINARY+cv.THRESH_OTSU)
print("threshold t : %d"%ret)
threshold t : 114
ROI
img_roi = cv.bitwise_and(img, img ,mask = otsu)

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值