概述
Ultralytics提供了一系列的解决方案,利用YOLO11解决现实世界的问题,包括物体计数、模糊处理、热力图、安防系统、速度估计、物体追踪等多个方面的应用。
队列管理涉及组织和控制排队的人员或车辆,以减少等待时间并提高效率。在市内交通、港口、零售、机场及其他服务业等各种环境中,它涉及优化队列,以提高客户满意度和系统性能。YOLO11队列管理可提供队列长度和等待时间的即时数据,使管理人员能够快速做出明智决策。
演示代码
Ultralytics提供了演示代码,展示如何使用队列管理解决方案。
import cv2
from ultralytics import solutions
cap = cv2.VideoCapture("path/to/video.mp4")
assert cap.isOpened(), "Error reading video file"
# Video writer
w, h, fps = (int(cap.get(x)) for x in (cv2.CAP_PROP_FRAME_WIDTH, cv2.CAP_PROP_FRAME_HEIGHT, cv2.CAP_PROP_FPS))
video_writer = cv2.VideoWriter("queue_management.avi", cv2.VideoWriter_fourcc(*"mp4v"), fps, (w, h))
# Define queue points
queue_region = [(20, 400), (1080, 400), (1080, 360), (20, 360)] # region points
# queue_region = [(20, 400), (1080, 400), (1080, 360), (20, 360), (20, 400)] # polygon points
# Initialize queue manager object
queuemanager = solutions.QueueManager(
show=True, # display the output
model="yolo11n.pt", # path to the YOLO11 model file
region=queue_region, # pass queue region points
)
# Process video
while cap.isOpened():
success, im0 = cap.read()
if not success:
print("Video frame is empty or processing is complete.")
break
results = queuemanager(im0)
# print(results) # access the output
video_writer.write(results.plot_im) # write the processed frame.
cap.release()
video_writer.release()
cv2.destroyAllWindows() # destroy all opened windows
QueueManager
参数
基本参数
参数 | 类型 | 默认值 | 说明 |
---|---|---|---|
model | str | None | Ultralytics YOLO 模型文件的路径。 |
region | list | [(20, 400), (1260, 400)] | 定义计数区域的点列表。 |
QueueManager
支持使用track参数:
参数 | 类型 | 默认值 | 说明 |
---|---|---|---|
tracker | str | 'botsort.yaml' | 指定要使用的跟踪算法, bytetrack.yaml 或 botsort.yaml . |
conf | float | 0.3 | 设置检测的置信度阈值;数值越低,跟踪的物体越多,但可能会出现误报。 |
iou | float | 0.5 | 设置交叉重叠 (IoU) 阈值,用于过滤重叠检测。 |
classes | list | None | 按类别索引筛选结果。例如 classes=[0, 2, 3] 只跟踪指定的类别(class在COCO数据集定义)。 |
verbose | bool | True | 控制跟踪结果的显示,提供被跟踪物体的可视化输出。 |
device | str | None | 指定用于推理的设备(例如: cpu , cuda:0 或 0 ). 允许用户选择CPU 、特定GPU 或其他计算设备运行模型。 |
可视化参数:
参数 | 类型 | 默认值 | 说明 |
---|---|---|---|
show | bool | False | 如果 True 在一个窗口中显示注释的图像或视频。有助于在开发或测试过程中提供即时视觉反馈。 |
line_width | None or int | None | 指定边界框的线宽。如果 None 则根据图像大小自动调整线宽,使图像更加清晰。 |
show_conf | bool | True | 在标签旁显示每次检测的置信度得分。让人了解模型对每次检测的确定性。 |
show_labels | bool | True | 在可视输出中显示每次检测的标签。让用户立即了解检测到的物体。 |
工作原理
基于目标检测和跟踪,在视频帧的指定区域内统计进入队列的对象数量(如人、车辆等)。
队列区域判断:依赖几何判断确定目标是否进入预定义区域,区域可以是预定义的矩形或者多边形。
轨迹插值:通过 track_line 记录目标移动路径,结合前后位置变化判断是否进入区域。
可视化:使用 colors 为不同目标分配颜色,增强可视化区分度。
效果展示
这里使用演示代码,对测试视频中的路口车辆进行队列计数。
由于摄像机角度影响,YOLO并不能检出设定区域内的所有车辆。上图所示在检测区域内有9辆排队车辆,而实际情况并非如此。
因此,在实际应用中,需要综合考虑以下因素:
摄像机位置:将摄像机安装在排队区域上方,图像能够区分每一个排队的个体。
定义适当的队列区域:根据空间的物理布局设置队列边界,可以设置多边形以增加队列计数精度。
调整检测可信度:根据照明条件和人群密度微调可信度阈值,减少误检和漏检。
与信息系统集成:将排队管理解决方案的检测结果输出到信息管理系统,对于过长的排队及时采取措施,实现管理优化。