论文-阅读理解笔记-Predicting DGA with Long Short-Term Memory Networks

本文提出使用LSTM网络预测DGA生成的域名,这是首次将深度学习应用于该领域并展示了显著优于传统技术的实验结果。LSTM能有效捕捉域名中的序列模式,无需额外上下文信息,简化了特征提取过程。实验证明,LSTM模型在二元分类DGA和非DGA域名时,精确度和召回率优于其他技术,且易于部署在实时系统中。
摘要由CSDN通过智能技术生成

主要贡献:

1)引入一个LSTM网络来预测DGA生成的域,据我们所知,这是第一个深度学习到这个域的应用和深入分析;

2)呈现完整的实验结果,显示使用开放数据集的文献比先前的技术(实时和回顾性)显着改进;

 

背景介绍:

Domain Generation Algorithms

本文评估了对来自30种不同类型恶意软件的DGA生成域进行分类的能力。

DGA技术的复杂性从简单的统一生成的域名到那些试图模拟在实际域中看到的分布的域名。

在不使用上下文信息的情况下,使用suppobox等算法预测DGA生成的域是非常困难的。 事实上,本文提出的LSTM技术是唯一能够对这些域进行分类的实时技术。

DGA Classification

DGA分类可以成为域名信誉系统的有用组成部分。 域名信誉系统的任务是

指定一个域的可信得分。 该分数通常从0(最良性)到1(最恶意)变化。 域名信誉系统通常包含许多异构数据以决定域的声誉。 DGA分类是可以帮助将声誉分配给域的一条信息。以前的DGA分类方法大致可以分为两类:

1)回顾:按组分类域以利用批量统计属性或共同的上下文信息;

2)实时:单独对域名进行分类,不需要额外的上下文信息

LSTM Networks

在各种自然语言任务中,递归神经网络(RNN)已被用于捕获序列中令牌之间的有意义的时间关系。 RNNs的关键优势在于它们将上下文(状态)信息纳入从输入到输出的映射中。 也就是说,单个RNN小区的输出是输入层和先前RNN激活的函数。 由于包含自回归连接引入的长操作链

Semi-supervised classification with graph convolutional networks (GCNs) is a method for predicting labels for nodes in a graph. GCNs are a type of neural network that operates on graph-structured data, where each node in the graph represents an entity (such as a person, a product, or a webpage) and edges represent relationships between entities. The semi-supervised classification problem arises when we have a graph where only a small subset of nodes have labels, and we want to predict the labels of the remaining nodes. GCNs can be used to solve this problem by learning to propagate information through the graph, using the labeled nodes as anchors. The key idea behind GCNs is to use a graph convolution operation to aggregate information from a node's neighbors, and then use this aggregated information to update the node's representation. This operation is then repeated over multiple layers, allowing the network to capture increasingly complex relationships between nodes. To train a GCN for semi-supervised classification, we use a combination of labeled and unlabeled nodes as input, and optimize a loss function that encourages the network to correctly predict the labels of the labeled nodes while also encouraging the network to produce smooth predictions across the graph. Overall, semi-supervised classification with GCNs is a powerful and flexible method for predicting labels on graph-structured data, and has been successfully applied to a wide range of applications including social network analysis, drug discovery, and recommendation systems.
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值