菅田将暉_
码龄3年
关注
提问 私信
  • 博客:65,646
    65,646
    总访问量
  • 16
    原创
  • 1,744,216
    排名
  • 18
    粉丝
  • 0
    铁粉
IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:江苏省
  • 加入CSDN时间: 2021-08-08
博客简介:

Mr_Suda的博客

查看详细资料
个人成就
  • 获得50次点赞
  • 内容获得11次评论
  • 获得278次收藏
创作历程
  • 3篇
    2022年
  • 13篇
    2021年
成就勋章
兴趣领域 设置
  • 人工智能
    数据挖掘机器学习深度学习自然语言处理pytorchnlp
创作活动更多

仓颉编程语言体验有奖征文

仓颉编程语言官网已上线,提供版本下载、在线运行、文档体验等功能。为鼓励更多开发者探索仓颉编程语言,现诚邀各位开发者通过官网在线体验/下载使用,参与仓颉体验有奖征文活动。

368人参与 去创作
  • 最近
  • 文章
  • 代码仓
  • 资源
  • 问答
  • 帖子
  • 视频
  • 课程
  • 关注/订阅/互动
  • 收藏
搜TA的内容
搜索 取消

Relational Graph Attention Network for Aspect-based Sentiment Analysis

1.Introducton2.Model3.Experiments4.Conclusion
原创
发布博客 2022.06.07 ·
1275 阅读 ·
0 点赞 ·
0 评论 ·
6 收藏

BiSyn-GAT+: Bi-Syntax Aware Graph Attention Network for Aspect-based Sentiment Analysis

1.Introducton2.Model3.Experiments4.Conclusion
原创
发布博客 2022.06.01 ·
1745 阅读 ·
2 点赞 ·
7 评论 ·
6 收藏

Aspect-based Sentiment Analysis with Type-aware Graph Convolutional Networks and Layer Ensemble 阅读笔记

1.Introducton2.Model3.Experiments4.Conclusion
原创
发布博客 2022.01.24 ·
3160 阅读 ·
2 点赞 ·
0 评论 ·
9 收藏

Aspect-based Sentiment Classification with Aspect-specific Graph Convolutional Networks 阅读笔记

第一篇GCN模型用于ABSA研究的文章。
原创
发布博客 2021.12.20 ·
1138 阅读 ·
0 点赞 ·
1 评论 ·
5 收藏

召回率(rec),准确率(acc),精确率(pre),F1值

这几天在看有关ABSA论文的代码,而代码跑出来的结果除了有输出loss的值以外还有一个acc的值和一个F1的值。查看了网上对于一些博客以后,对于模型的这三个评价指标有了一个新的认识,因此在这里我写出了自己的认识。1.混淆矩阵提到召回率,准确率,精确率和F1值,我就不得不提一下什么叫做混淆矩阵。混淆矩阵说简单一点就是一个矩阵。一个什么样的矩阵呢?一个关于预测值和真实值得一个矩阵。(Tips:为了方便理解,下面会以一个二分类问题作为讲解)这个句子的情感是不是积极的 实际值(1:积极,0
原创
发布博客 2021.12.19 ·
42848 阅读 ·
45 点赞 ·
3 评论 ·
219 收藏

Dual Graph Convolutional Networks for Aspect-based Sentiment Analysis阅读笔记

1.Introduction本文是2021年ACL会议中的一篇利用GCN模型来对方面级情感分析进行研究的一篇文章。文章中作者提出了一种DualGCN模型来分析一个给定句子的语义和句法结构。还提出一种正交正则化以及差分正则化来获得更好的语义表示。2.ModelDualGCN模型图在这里我们分成SynGCN和SemGCN两个部分来对DualGCN模型进行一个介绍。2.1 SynGCNSynGCN这个部分主要是对给定句子的语法结构(句法结构)进行一个分析。这里我门可以看到,我...
原创
发布博客 2021.12.16 ·
1514 阅读 ·
0 点赞 ·
0 评论 ·
7 收藏

Transformer(“变形金刚”)

上一篇博客里面,我们讲解了self-attention机制。而self-attention机制最早是在“Attenion Is All Your Need”这篇论文中提出的。而self-attention只不过是这边论文的很小一支而已。所以今天在这里我们要介绍这篇论文的精髓所在——Transformer(“变形金刚”)1.Transformer模型结构在第一次写attention那篇博客中,我们将attention机制嵌套到了Encode—Decoder的架构来解释其运行的原来。在那篇博客中,我们利
原创
发布博客 2021.12.03 ·
2121 阅读 ·
0 点赞 ·
0 评论 ·
1 收藏

Self-Attention Mechanism(自注意力机制)

self-attention是注意力机制中的一种,也是transformer中的重要组成部分,而self-attention其本质的基础便是上一文提到了attention。本文中只讲解最简单的Self-Attention Mechanism,涉及到其他的会在transformer里面进行提及。1.Self-Attention Mechanism模型结构在Self-Attention的模型中,模型的输出是对整个模型的输入进行一个考虑,最终得到了相应的输出。(类似于Attention中S_i对于每个H_
原创
发布博客 2021.11.29 ·
2583 阅读 ·
0 点赞 ·
0 评论 ·
4 收藏

Attention Mechanism(注意力机制)

注意力机制逐渐在NLP中得地位变得越来越重要,上有Google的"Attention is All You Need"论文,下有 Tranformer、BERT等强大的NLP表征模型,attention 在 NLP 的地位就像卷积层在图像识别一样变得不可缺少的一部分,而所谓的注意力机制就是对输入权重分配的关注。在这里,我们将结合Seq2Seq+Attenrtion来讲述其基本的运作模式。1.Seq2Seq+Attenrtion模型结构我们知道在Seq2Seq的模型中,Encoder的最后一个输出,我
原创
发布博客 2021.11.29 ·
793 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

Recurrent neural network(循环神经网络)-多层RNN,双向RNN

原创
发布博客 2021.11.28 ·
1213 阅读 ·
0 点赞 ·
0 评论 ·
3 收藏

Seq2Seq Model(序列到序列模型)

原创
发布博客 2021.11.28 ·
1730 阅读 ·
0 点赞 ·
0 评论 ·
2 收藏

Long Short-Term Memory(长短期记忆网络)

在这篇文章中将介绍的是RNN的一个“升级”模型,LSTM。LSTM可以说是复杂版本的RNN,相较于simple-RNN,LSTM可以有效地避免了梯度消失的问题,并且在RNN的基础上可以有更长的记忆。1.LSTM的模型结构LSTM与simple-RNN的区别更多的在于,LSTM引入了门的一个机制的设定,从而导致了LSTM有4个学习参数(simple-RNN只有一个)。上图所展示的便是LSTM和simple-RNN的大致模型图。在LSTM中,一共有3个门,忘记门(forget gate),.
原创
发布博客 2021.11.27 ·
1537 阅读 ·
0 点赞 ·
0 评论 ·
4 收藏

Recurrent neural network(循环神经网络)

RNN(Recurrent Neural Network)是一类用于处理序列数据的神经网络。在bert,transformer没有问世以前,RNN在NLP任务中的运用是十分广泛的。为此也诞生了许多基于RNN的模型,例如我们常常提到的LSTM等等。在这里我们先介绍最简单的RNN模型,simple-RNN。1.RNN的模型结构上图所展示的便是一个单层(单向)的RNN的结构。在结构中我们可以看到,一个单层的RNN的模型可以看成由三个部分组成:输入层,隐藏层和输出层。这里我们按照图中所示,将X_t赋给.
原创
发布博客 2021.11.27 ·
2208 阅读 ·
1 点赞 ·
0 评论 ·
6 收藏

李宏毅机器学习笔记—第二节—When gradient is small

1.局部最小值和鞍点(Local Minimum And Saddle Point)2.批次与动量(_Batch and Momentum)3.自动调整学习率(Learning rate)4.损失函数也可能有影响(Loss)5.批次标准化(_Batch Normalization)
原创
发布博客 2021.10.14 ·
387 阅读 ·
0 点赞 ·
0 评论 ·
8 收藏

李宏毅机器学习笔记—第二节—General Guidance

1.机器学习的任务攻略(General Guidance)2.类神经网络训练不起来怎么办(When gradient is small)1.局部最小值和鞍点(Local Minimum And Saddle Point)2.批次与动量(_Batch and Momentum)3.自动调整学习率(Learning rate)4.损失函数也可能有影响(Loss)5.批次标准化(_Batch Normalization)...
原创
发布博客 2021.08.15 ·
661 阅读 ·
0 点赞 ·
0 评论 ·
3 收藏

李宏毅机器学习笔记-第一节

旧账号博客链接:https://blog.csdn.net/dwarf111/article/details/118965868?spm=1001.2014.3001.5501
原创
发布博客 2021.08.08 ·
384 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏
加载更多