CVPR 2020 论文大盘点-图像质量评价篇

本文盘点了CVPR 2020中关于图像质量评价的7篇论文,涵盖有参考和无参考图像质量评估,包括在真实场景、智能手机摄影、人脸识别等领域的应用。文章介绍了新提出的自适应超网络架构、盲图像质量评价模型以及针对眼部美学评估和图像纵横比影响的研究,提供了相关数据集和开源代码。
摘要由CSDN通过智能技术生成

本文继去雨去雾去模糊篇 、 图像增强与图像恢复篇 、图像修复Inpainting篇之后,继续盘点CVPR 2020 中底层图像处理技术中非常重要的一块:图像质量评价(Image Quality Assessment

示例如下图:

上面左图为原图,中间为经过JPEG2000压缩后的图,右图为高斯模糊后的图,从清晰度来讲,肯定第一幅图质量更高,质量评价就是给图像打分,即如何用算法自动化给图像打分。

可以是有参考图像的打分,比如对图像压缩后质量进行评价。也可以没有参考图像,即盲图像质量评价。
 

虽然是个小众领域,但是很重要。

因为对图像处理增强也好、恢复也好,你总要评价结果好坏;又或者你单纯的想对某一项视觉任务评估图像能否满足需要,比如针对人脸识别的质量评价,看一幅图像是否应该拒绝还是输入到人脸识别系统中;现在也有很多人研究图像的美学评价,这就很好理解了,对图像拍的美不美进行打分。

CVPR 2020 共有7篇相关论文,既涉及到底层的视觉感知质量的评价,也涉

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值