本文转载自腾讯优图实验室。
近日,腾讯优图实验室在模型压缩任务中获得创新性突破,提出的基于滤波器骨架的逐条剪枝算法(Stripe-Wise Pruning,SWP),刷新了滤波器剪枝的SOTA效果。相关论文(Pruning Filter in Filter)已被机器学习领域的国际顶级会议Conference on Neural Information Processing Systems(NeurIPS 2020)收录,代码已开源。
图1 Stripe-Wise Pruning
与几种主流Pruning方式的区别
神经网络的具有结构和参数这两个属性,这两个属性都具有重要意义。该文指出神经网络的滤波器除了通常使用的参数属性以外,还有一种形状属性。形状属性之前一直隐含在参数中,通过训练每个滤波器的参数使其获得不同的形状。滤波器的形状属性具有重要的意义。具有合适形状的滤波器,即使参数是随机的,也能具有较好的性能。
因此该文通过一种名为滤波器骨架(Filter Skeleton,FS)的模块来显性地学习滤波器的形状(如图2中①)。当训练结束,我们可以将FS乘回参数上,因此不会引入额外的参数(如图2中②)。
图2 PFF方法流程示意图
对于不在骨架上的参数,使用逐条裁剪的方法将其整条(stripe,1*1滤波器)裁剪掉。
具体的,首先通过卷积计算顺序的变换,可以将滤波器从Filter wise等价变换为stripe wise(如图2中③)。接下来就可以使用正常的滤波器剪枝方法对其进行裁剪(如图2中④)。
该方法的创新点包括:
1 | 提出滤波器除了参数属性外,还存在形状属性,并且形状属性具有重要意义。 |
2 | 提出滤波器骨架的模块来学习滤波器的形状,并可以指导模型剪枝。 |
3 | 通过变换普通卷积为Stripe-Wise Convolution,结构化的实现逐条剪枝后的模型。 |
图3
图4
目前逐条剪枝算法在CIFAR10和ImageNet数据集上达到了SOTA效果。文章已公开,复制下方链接即可访问????
Pruning Filter in Filter
论文:
https://arxiv.org/abs/2009.14410
代码:
https://github.com/fxmeng/Pruning-Filter-in-Filter
(点击左下角阅读原文,直达论文)
备注:部署
模型压缩与应用部署交流群
模型压缩、网络压缩、神经网络加速、轻量级网络设计、知识蒸馏、应用部署、MNN、NCNN等技术,
若已为CV君其他账号好友请直接私信。
OpenCV中文网
微信号 : iopencv
QQ群:805388940
微博/知乎:@我爱计算机视觉
投稿:amos@52cv.net
网站:www.52cv.net
在看,让更多人看到