最短路基础算法

1 Dijkstra

算法思想:类似于BFS,由源点出发,向四周扩展,每次取出权值最小的结点,由该结点继续更新,并将更新的结点丢入队列。
利用优先队列优化后,复杂度为 O(nlog(n))

优先队列优化的Dijkstra

int dij() {
  priority_queue<Node> q;
  q.push(Node(1, 0));
  d[1] = 0;
  while (!q.empty()) {
    Node f = q.top();
    q.pop();
    for (int i = 1; i <= n; i++) {
      if (d[i] > edge[f.p][i] + f.dis) {
        d[i] = edge[f.p][i] + f.dis;
        q.push(Node(i, d[i]));
      }
    }
  }
  return d[n];
}
2 Bellman-ford

算法思想:若最短路存在,则至多经过 n1 个节点(不包括源点)。那么只需要执行 n1 次“松弛”操纵,即可得到最短路。每次松弛操作,对所有的边 (u,v) ,更新源点到 u 的距离(或者到v的距离也可以)。

int bf() {
  d[1] = 0;
  for (int i = 0; i < n; i++) {
    for (int j = 0; j < 2 * m; j++) {
      int a = x[j], b = y[j], c = z[j];
      d[a] = min(d[a], d[b] + c);
    }
  }
  return d[n];
}

spfa

int spfa() {
  queue<int> q;
  q.push(1);
  d[1] = 0;
  inq[1] = true;
  ct[1] = 1;
  while (!q.empty()) {
    int u = q.front();
    q.pop();
    inq[u] = false;
    for (int i = 1; i <= n; i++) {
      if (d[i] > d[u] + edge[u][i]) {
        d[i] = d[u] + edge[u][i];
        if (!inq[i]) {
          q.push(i);
          inq[i] = true;
          ct[i]++;
          if (ct[i] == n)
            return -1;
        }
      }
    }
  }
  return d[n];
}
3 Floyd
int floyd() {
  for (int i = 1; i <= n; i++)
    edge[i][i] = 0;
  for (int k = 1; k <= n; k++) {
    for (int i = 1; i <= n; i++) {
      for (int j = 1; j <= n; j++) {
        edge[i][j] = min(edge[i][j], edge[i][k] + edge[k][j]);
      }
    }
  }
  return edge[1][n];
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值