这一系列的文章主要是自己读《利用python进行数据分析》所做的总结,详细内容可以参考这本书,本系列主要做梳理和简化,本章主要介绍pandas的文件读写函数和常用的数据分析处理函数,pandas和numpy一样都是python中非常常用的库。
1、pandas的文件读函数
1.1、read_csv()函数。用于读取csv文件的函数:默认的分隔符为逗号,得到的df是pandas的DataFrame数据结构格式。
可以看到如果你原始表格带有列名,那么默认方式读入的话会沿用这个列名。如果你原始表格没有列名,那么需要加上关键字header=None或添加新的列名,这样你表格中的所有内容都将当做是DataFrame的内容:
读大型文件的话,可以限制读入的行数:
1.2、read_table()函数。默认分隔符为制表符("\t")。也可以用read_table()来读csv文件,不过要指定分隔符。