利用python进行数据分析——之数据结构pandas(一)

本文介绍了pandas库在Python数据分析中的基本操作,包括使用read_csv、read_table读取文件,json.load读取JSON,to_csv写入CSV,以及merge连接数据,drop_duplicates去重,replace替换值,cut数据离散化,describe统计信息,get_dummies哑变量转换,groupby分组聚合和apply方法的应用。
摘要由CSDN通过智能技术生成

这一系列的文章主要是自己读《利用python进行数据分析》所做的总结,详细内容可以参考这本书,本系列主要做梳理和简化,本章主要介绍pandas的文件读写函数和常用的数据分析处理函数,pandas和numpy一样都是python中非常常用的库。

1、pandas的文件读函数

1.1、read_csv()函数。用于读取csv文件的函数:默认的分隔符为逗号,得到的df是pandas的DataFrame数据结构格式。


可以看到如果你原始表格带有列名,那么默认方式读入的话会沿用这个列名。如果你原始表格没有列名,那么需要加上关键字header=None或添加新的列名,这样你表格中的所有内容都将当做是DataFrame的内容:



读大型文件的话,可以限制读入的行数:


1.2、read_table()函数。默认分隔符为制表符("\t")。也可以用read_table()来读csv文件,不过要指定分隔符。

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值