一.ndarry对象
1.ndarry对象是一个多维数组的构造器,可以生成不同维度的多维数组。但要求每一维都有自己的格式,其使用如下:
引入包 import numpy as np
构造array :np.array([[[1,2,3],[4,5,6]],[[7,8,9],[10,11,12]]],dtype=np.float64)#所有的要归于一个list,即我们需要将整个构造得由一个【】包裹
查看array维度: arr.shape
构造全0array:np.zeros(5)
构造全0array:np.zeros((3,6))#前者由于只有一维故省略了一部分
构造全1array:np.ones((4,6))
二.切片
array=np.array([1,2,3,4])
n=array[1:3] #切片生成的是一个新的ndarray
重要区别:对array切片生成的是一份视图,对视图的修改会直接影响元数据,而list不会,若想拷贝一个副本而非视图请array[2:3].copy()
三.数组间的标量计算
数组之间具有广播性质,不论是与可以进行简单的四则运算和矩阵乘除法,但最后都会生成新的矩阵
四.布尔值索引
布尔值索引意为用布尔值来对矩阵切片
五.花式索引(生成的是新的拷贝,属深拷贝)
如a[[1,2,3],[3,4,1]] 将这几行这几列提出作为新的矩阵,且顺序有效