numpy数组及矢量计算

一.ndarry对象

    1.ndarry对象是一个多维数组的构造器,可以生成不同维度的多维数组。但要求每一维都有自己的格式,其使用如下:

              引入包 import numpy as np

              构造array :np.array([[[1,2,3],[4,5,6]],[[7,8,9],[10,11,12]]],dtype=np.float64)#所有的要归于一个list,即我们需要将整个构造得由一个【】包裹

              查看array维度: arr.shape

              构造全0array:np.zeros(5)

              构造全0array:np.zeros((3,6))#前者由于只有一维故省略了一部分
              构造全1array:np.ones((4,6))

二.切片

array=np.array([1,2,3,4])

n=array[1:3] #切片生成的是一个新的ndarray

重要区别:对array切片生成的是一份视图,对视图的修改会直接影响元数据,而list不会,若想拷贝一个副本而非视图请array[2:3].copy()

三.数组间的标量计算

数组之间具有广播性质,不论是与可以进行简单的四则运算和矩阵乘除法,但最后都会生成新的矩阵

四.布尔值索引

    布尔值索引意为用布尔值来对矩阵切片

五.花式索引(生成的是新的拷贝,属深拷贝)

如a[[1,2,3],[3,4,1]] 将这几行这几列提出作为新的矩阵,且顺序有效


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值